Mondal S, Mukhopadhyay T, Naskar S
Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK.
Commun Eng. 2025 Jun 7;4(1):103. doi: 10.1038/s44172-025-00420-7.
Traditionally materials show an uncoupled response between normal and shear modes of deformation. Here we propose to achieve heterogeneous mode coupling among the normal and shear modes, but in conventional symmetric lattice geometries through intuitively mounting electro-active elements. The proposed bi-level multi-physically architected metamaterials lead to an unprecedented programmable voltage-dependent normal-shear constitutive mode coupling and active multi-modal stiffness modulation capability for critically exploitable periodic or aperiodic, on-demand and temporally tunable mechanical responses. Further, active partial cloaking concerning the effect of far-field complex stresses can be achieved, leading to the prospect of averting a range of failure and serviceability conditions. The tunable heterogeneous mode coupling in the new class of symmetric metamaterials would lead to real-time control of mechanical responses for temporal programming in a wide range of advanced mechanical applications, including morphing and transformable geometries, locomotion in soft robotics, embedded actuators, enhanced multi-modal energy harvesting, vibration and wave propagation control.
传统上,材料在法向和剪切变形模式之间表现出非耦合响应。在此,我们提议通过直观地安装电活性元件,在常规对称晶格几何结构中实现法向和剪切模式之间的非均匀模式耦合。所提出的双层多物理结构超材料导致了前所未有的可编程电压依赖性法向-剪切本构模式耦合以及主动多模态刚度调制能力,可用于关键的周期性或非周期性、按需和时间可调的机械响应。此外,可以实现关于远场复合应力效应的主动部分隐身,从而有望避免一系列失效和适用性条件。新型对称超材料中可调谐的非均匀模式耦合将导致在广泛的先进机械应用中对机械响应进行实时控制,以实现时间编程,包括变形和可变形几何形状、软机器人中的运动、嵌入式致动器、增强的多模态能量收集、振动和波传播控制。