Xiao Qing, Shen Mengdie, Li Guangjun, Zhu Shipai, He Jinrong, Wang Qiang, Dai Guyu, Yu Hang, Lai Jialu, Zhong Renming, Bai Sen
Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
Radiat Oncol. 2025 Jun 7;20(1):98. doi: 10.1186/s13014-025-02670-3.
The integration of magnetic resonance imaging with linear accelerators (Linacs) enhances adaptive radiotherapy by providing real-time imaging for improved treatment precision. However, the long-term performance of MR-Linac systems, particularly in clinical settings, remains insufficiently studied. Traditional quality assurance (QA) methods, relying on binary pass/fail criteria, may overlook critical system variations. This study applies statistical process control (SPC) techniques to evaluate the long-term performance of a 1.5T MR-Linac, focusing on optimization in beam quality, MR-to-MV alignment, MR imaging, and geometric distortion.
A dual-phase SPC framework was applied to 1 year of daily and weekly QA data from an Elekta Unity MR-Linac. Phase I established performance benchmarks, while Phase II monitored deviations online. Evaluated parameters included beam output, symmetry, MR-to-MV alignment, signal-to-noise ratio (SNR), spatial linearity, slice profile, and geometric distortion across spherical volumes (DSVs). Stability and variability were quantified using control charts and process performance indices (Ppk).
Beam quality was stable overall (Ppk ≥ 1.33), though output dose and transverse symmetry showed increased variability in Phase II, with dose Ppk declining from 3.13 to 1.33. MR-to-MV alignment was consistent, but Phi rotational and Z translational offsets showed variability after system upgrades. Imaging metrics, including SNR and spatial linearity, achieved A + performance (Ppk ≥ 1.67) in Phase II, while vertical spatial resolution was lower (Ppk 1.04-1.10). Geometric distortion was well-controlled, though larger DSVs (≥ 500 mm) showed increased AP-axis distortion (2.44 mm) compared to RL (1.37 mm) and FH (0.93 mm).
SPC techniques dynamically identified stable parameters and areas for improvement. Key recommendations include enhanced alignment protocols for beam quality and MR-to-MV offsets, as well as targeted strategies to address geometric distortion in larger volumes and along the AP axis.
磁共振成像与直线加速器(Linac)的整合通过提供实时成像来提高治疗精度,从而增强了自适应放射治疗。然而,MR-Linac系统的长期性能,尤其是在临床环境中的性能,仍未得到充分研究。传统的质量保证(QA)方法依赖于二元通过/失败标准,可能会忽略关键的系统变化。本研究应用统计过程控制(SPC)技术来评估1.5T MR-Linac的长期性能,重点关注束流质量、MR与MV对准、MR成像和几何畸变的优化。
将双阶段SPC框架应用于Elekta Unity MR-Linac的1年每日和每周QA数据。第一阶段建立性能基准,而第二阶段在线监测偏差。评估的参数包括束流输出、对称性、MR与MV对准、信噪比(SNR)、空间线性、切片轮廓以及跨球形体(DSV)的几何畸变。使用控制图和过程性能指数(Ppk)对稳定性和变异性进行量化。
束流质量总体稳定(Ppk≥1.33),尽管输出剂量和横向对称性在第二阶段显示出变异性增加,剂量Ppk从3.13降至1.33。MR与MV对准一致,但在系统升级后,Phi旋转和Z平移偏移显示出变异性。包括SNR和空间线性在内的成像指标在第二阶段达到了A+性能(Ppk≥1.67),而垂直空间分辨率较低(Ppk为1.04 - 1.10)。几何畸变得到了很好的控制,尽管较大的DSV(≥500mm)与RL(1.37mm)和FH(0.93mm)相比,显示出更大的前后轴畸变(2.44mm)。
SPC技术动态识别了稳定参数和改进领域。关键建议包括加强束流质量和MR与MV偏移的对准协议,以及针对较大体积和前后轴几何畸变的针对性策略。