Allgayer Heike, Mahapatra Samikshya, Mishra Barnalee, Swain Biswajit, Saha Suryendu, Khanra Sinjan, Kumari Kavita, Panda Venketesh K, Malhotra Diksha, Patil Nitin S, Leupold Jörg H, Kundu Gopal C
Department of Experimental Surgery-Cancer Metastasis, Mannheim Medical Faculty, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Str. 13-17, Mannheim, 68167, Germany.
School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India.
Mol Cancer. 2025 Jun 7;24(1):167. doi: 10.1186/s12943-025-02338-2.
Epithelial-to-mesenchymal transition (EMT) is a crucial cellular process for embryogenesis, wound healing, and cancer progression. It involves a shift in cell interactions, leading to the detachment of epithelial cells and activation of gene programs promoting a mesenchymal state. EMT plays a significant role in cancer metastasis triggering tumor initiation and stemness, and activates metastatic cascades resulting in resistance to therapy. Moreover, reversal of EMT contributes to the formation of metastatic lesions. Metastasis still needs to be better understood functionally in its major but complex steps of migration, invasion, intravasation, dissemination, which contributes to the establishment of minimal residual disease (MRD), extravasation, and successful seeding and growth of metastatic lesions at microenvironmentally heterogeneous sites. Therefore, the current review article intends to present, and discuss comprehensively, the status quo of experimental models able to investigate EMT and metastasis in vitro and in vivo, for researchers planning to enter the field. We emphasize various methods to understand EMT function and the major steps of metastasis, including diverse migration, invasion and matrix degradation assays, microfluidics, 3D co-culture models, spheroids, organoids, or latest spatial and imaging methods to analyze complex compartments. In vivo models such as the chorionallantoic membrane (CAM) assay, cell line-derived and patient-derived xenografts, syngeneic, genetically modified, and humanized mice, are presented as a promising arsenal of tools to analyze intravasation, site specific metastasis, and treatment response. Furthermore, we give a brief overview on methods detecting dissemination and MRD in carcinomas, highlighting its significance in tracking the course of disease and response to treatment. Enhanced lineage tracking tools, dynamic in vivo imaging, and therapeutically useful in vivo models as powerful preclinical tools may still better reveal functional interdependencies between metastasis and EMT. Future directions are discussed in light of emerging views on the biology, diagnosis, and treatment of EMT and metastasis.
上皮-间质转化(EMT)是胚胎发育、伤口愈合和癌症进展过程中的一个关键细胞过程。它涉及细胞间相互作用的转变,导致上皮细胞脱离,并激活促进间质状态的基因程序。EMT在癌症转移中起着重要作用,引发肿瘤起始和干性,并激活转移级联反应,导致对治疗产生抗性。此外,EMT的逆转有助于转移性病变的形成。在转移的主要但复杂的步骤,即迁移、侵袭、内渗、播散(这有助于建立微小残留病(MRD))、外渗以及在微环境异质性部位成功播种和生长转移性病变方面,其功能仍有待更好地理解。因此,本综述文章旨在全面介绍和讨论能够在体外和体内研究EMT和转移的实验模型的现状,以供计划进入该领域的研究人员参考。我们强调了各种理解EMT功能和转移主要步骤的方法,包括不同的迁移、侵袭和基质降解分析、微流控技术、3D共培养模型、球体、类器官或最新的空间和成像方法,以分析复杂的区室。体内模型,如绒毛尿囊膜(CAM)试验、细胞系衍生和患者衍生的异种移植、同基因、基因改造和人源化小鼠,被作为分析内渗、位点特异性转移和治疗反应的有前景的工具库进行介绍。此外,我们简要概述了检测癌症中播散和MRD的方法,强调了其在追踪疾病进程和治疗反应方面的重要性。增强的谱系追踪工具、动态体内成像以及作为强大临床前工具的具有治疗用途的体内模型,可能仍能更好地揭示转移与EMT之间的功能相互依赖性。根据关于EMT和转移的生物学、诊断和治疗的新观点,讨论了未来的方向。