Suppr超能文献

多癌早期检测的技术与未来

Technology and Future of Multi-Cancer Early Detection.

作者信息

Milner Danny A, Lennerz Jochen K

机构信息

Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA.

Union for International Cancer Control, 1202 Geneva, Switzerland.

出版信息

Life (Basel). 2024 Jun 29;14(7):833. doi: 10.3390/life14070833.

Abstract

Cancer remains a significant global health challenge due to its high morbidity and mortality rates. Early detection is essential for improving patient outcomes, yet current diagnostic methods lack the sensitivity and specificity needed for identifying early-stage cancers. Here, we explore the potential of multi-omics approaches, which integrate genomic, transcriptomic, proteomic, and metabolomic data, to enhance early cancer detection. We highlight the challenges and benefits of data integration from these diverse sources and discuss successful examples of multi-omics applications in other fields. By leveraging these advanced technologies, multi-omics can significantly improve the sensitivity and specificity of early cancer diagnostics, leading to better patient outcomes and more personalized cancer care. We underscore the transformative potential of multi-omics approaches in revolutionizing early cancer detection and the need for continued research and clinical integration.

摘要

由于癌症的高发病率和死亡率,它仍然是一项重大的全球健康挑战。早期检测对于改善患者预后至关重要,但目前的诊断方法缺乏识别早期癌症所需的敏感性和特异性。在此,我们探讨多组学方法的潜力,该方法整合了基因组、转录组、蛋白质组和代谢组数据,以加强早期癌症检测。我们强调了从这些不同来源进行数据整合的挑战和益处,并讨论了多组学在其他领域应用的成功案例。通过利用这些先进技术,多组学可以显著提高早期癌症诊断的敏感性和特异性,从而带来更好的患者预后和更个性化的癌症护理。我们强调多组学方法在革新早期癌症检测方面的变革潜力,以及持续研究和临床整合的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c2e/11277619/bb6e71e80a86/life-14-00833-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验