Gillman Rhys, Field Matt A, Schmitz Ulf, Hebbard Lionel
Department of Biomedical Sciences and Molecular and Cell Biology, College of Medicine and Dentistry, College of Science and Engineering, James Cook University, 1 James Cook Drive, Townsville, Queensland, Australia.
Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, 14-88 McGregor Road, Smithfield, QLD 4878, Australia.
Brief Bioinform. 2025 May 1;26(3). doi: 10.1093/bib/bbaf255.
The ability to identify patient-specific vulnerabilities to guide cancer treatments is a vital area of research. However, predictive bioinformatics tools are difficult to translate into clinical applications due to a lack of in vitro and in vivo validation. While the increasing number of personalised driver prioritisation algorithms (PDPAs) report powerful patient-specific information, the results do not easily translate into treatment strategies. Critical in addressing this gap is the ability to meaningfully benchmark and validate PDPA predictions. To address this, we developed Tumour-specific Algorithm for Ranking GEnetic Targets via Synthetic Lethality (TARGET-SL), which utilises PDPA predictions to produce a ranked list of predicted essential genes that can be validated in vitro and in vivo. This framework employs a novel strategy to benchmark PDPAs, by comparing predictions with ground truth gene essentiality data from large-scale CRISPR-knockout and drug sensitivity screens. Importantly TARGET-SL identifies vulnerabilities that are more exclusive to individual tumours than predictions based on canonical driver genes. We further find that TARGET-SL is better at identifying sample-specific vulnerabilities than other similar tools.
识别患者特异性脆弱性以指导癌症治疗的能力是一个至关重要的研究领域。然而,由于缺乏体外和体内验证,预测性生物信息学工具很难转化为临床应用。虽然越来越多的个性化驱动基因优先级排序算法(PDPAs)报告了强大的患者特异性信息,但这些结果不易转化为治疗策略。解决这一差距的关键在于有能力对PDPA预测进行有意义的基准测试和验证。为了解决这个问题,我们开发了通过合成致死性对基因靶点进行排名的肿瘤特异性算法(TARGET-SL),该算法利用PDPA预测生成一个预测必需基因的排名列表,这些基因可以在体外和体内进行验证。这个框架采用了一种新的策略来对PDPAs进行基准测试,即将预测结果与来自大规模CRISPR敲除和药物敏感性筛选的真实基因必需性数据进行比较。重要的是,与基于经典驱动基因的预测相比,TARGET-SL识别出的是个体肿瘤更特有的脆弱性。我们进一步发现,与其他类似工具相比,TARGET-SL在识别样本特异性脆弱性方面表现更好。