Chi Yongzhou, Luo Meilin, Ding Chengcheng
School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, People's Republic of China.
Antonie Van Leeuwenhoek. 2025 Jun 8;118(7):89. doi: 10.1007/s10482-025-02101-z.
Fish spoilage is a microbially-mediated biochemical process resulting in quality deterioration, economic losses, and food safety risks. Studies have indicated that spoilage microbiota are phylogenetically diverse, with Gram-negative bacteria (Pseudomonas, Shewanella, Photobacterium) representing primary spoilage organisms, and Gram-positive bacteria (Lactobacillus, Brochothrix) causing spoilage only under specific conditions. Microorganisms cause spoilage through the utilization of three main metabolic processes: (i) proteolytic degradation of muscle proteins, (ii) lipolytic breakdown of triglycerides, and (iii) production of volatile bioactive organic compounds and biogenic amines. By combining high-throughput sequencing with metabolomics, researchers have been uncovering strain-specific metabolic networks and how they are influenced by environmental factors such as temperature, pH, and packaging. This review systematically examines: (1) patterns of taxonomic succession in spoilage microbiota, (2) enzymatic and biochemical pathways involved in spoilage, and (3) innovative preservation strategies targeting spoilage consortia. Emerging technologies, such as bacteriocin-mediated biopreservation, phage therapy, and modified atmosphere packaging, show considerable promise in inhibiting spoilage organisms while maintaining the sensory qualities of the fish. Microbiome-directed interventions combined with predictive modeling and precision storage systems also represent a novel approach to fish preservation. There is a critical need to integrate traditional microbiology with the use of multi-omic technologies for the development of sustainable, microbiota-based preservation strategies that address global seafood security challenges.
鱼类腐败是一个由微生物介导的生化过程,会导致品质下降、经济损失和食品安全风险。研究表明,腐败微生物群在系统发育上具有多样性,革兰氏阴性菌(假单胞菌属、希瓦氏菌属、发光杆菌属)是主要的腐败生物,而革兰氏阳性菌(乳杆菌属、嗜冷脂肪芽孢杆菌属)仅在特定条件下才会导致腐败。微生物通过利用三种主要代谢过程导致腐败:(i)肌肉蛋白的蛋白水解降解,(ii)甘油三酯的脂肪分解,以及(iii)挥发性生物活性有机化合物和生物胺的产生。通过将高通量测序与代谢组学相结合,研究人员一直在揭示菌株特异性代谢网络以及它们如何受到温度、pH值和包装等环境因素的影响。本综述系统地研究了:(1)腐败微生物群的分类演替模式,(2)与腐败相关的酶促和生化途径,以及(3)针对腐败菌群的创新保鲜策略。新兴技术,如细菌素介导的生物保鲜、噬菌体疗法和气调包装,在抑制腐败生物的同时保持鱼类的感官品质方面显示出巨大的潜力。微生物组导向的干预措施与预测模型和精准储存系统相结合,也代表了一种鱼类保鲜的新方法。迫切需要将传统微生物学与多组学技术的应用相结合,以开发可持续的、基于微生物群的保鲜策略,应对全球海鲜安全挑战。