Suppr超能文献

基于在线拉曼分析仪的数据增强深度学习算法用于生物乙醇发酵的精确控制

Data-Augmented Deep Learning Algorithm for Accurate Control of Bioethanol Fermentation Using an Online Raman Analyzer.

作者信息

Ji Kaidi, Yu Xiaofei, Chen Lifan, Wang Yongbo, Guo Zhiqiang, Chen Biao, Li Qingyang, Li Zhen, Zhang Hu, Wang Guan, Zhuang Yingping, Ruan Yinlan

机构信息

School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, P.R. China.

Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P.R. China.

出版信息

Biotechnol Bioeng. 2025 Sep;122(9):2366-2376. doi: 10.1002/bit.29040. Epub 2025 Jun 8.

Abstract

Fed-batch fermentation has become the preferred strategy in many industrial biomanufacturing processes. However, a key challenge remains in optimizing the feeding strategy to achieve stable maximum yields. In this study, we present an online Raman spectroscopy-based monitoring and control system, using bioethanol production by Saccharomyces cerevisiae as a case study. To address the issue of limited labeled data, a pseudo-labeling approach based on semi-supervised learning was employed, expanding the available training data set by 100-fold compared to conventional labeling methods. In addition, we developed a spectral-temporal concatenation convolutional neural network (STC-CNN) that incorporates sequential spectral features. Comparative evaluations with multiple machine learning algorithms demonstrated the superior performance of STC-CNN, achieving a root mean square error (RMSE) of 3.63 g/L for glucose prediction. The system enabled rapid and automated glucose feeding to maintain various target concentrations. Notably, a glucose setpoint of 30 g/L yielded the highest ethanol concentration of 140.68 g/L-an increase of 3.85% over traditional Fed-batch fermentation-while reducing glycerol by 6.67%. These results highlight the significant potential of Raman spectroscopy combined with deep learning for automated bioprocess optimization and discovery of optimal operating strategies.

摘要

补料分批发酵已成为许多工业生物制造过程中的首选策略。然而,在优化补料策略以实现稳定的最大产量方面,仍然存在一个关键挑战。在本研究中,我们提出了一种基于在线拉曼光谱的监测与控制系统,以酿酒酵母生产生物乙醇为例进行研究。为了解决标记数据有限的问题,采用了一种基于半监督学习的伪标记方法,与传统标记方法相比,将可用训练数据集扩大了100倍。此外,我们开发了一种结合序列光谱特征的光谱-时间拼接卷积神经网络(STC-CNN)。与多种机器学习算法的比较评估表明,STC-CNN具有卓越的性能,在葡萄糖预测方面实现了3.63 g/L的均方根误差(RMSE)。该系统能够快速自动地补料葡萄糖以维持各种目标浓度。值得注意的是,30 g/L的葡萄糖设定点产生了最高乙醇浓度140.68 g/L,比传统补料分批发酵提高了3.85%,同时甘油减少了6.67%。这些结果凸显了拉曼光谱结合深度学习在自动生物过程优化和发现最佳操作策略方面的巨大潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验