Matsubara Masaaki, Ishihara Mayumi, Tiemeyer Michael, Aoki Kazuhiro, Ranzinger René
Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA.
The Noguchi Institute, Itabashi, Tokyo 173-0003, Japan.
BBA Adv. 2025 Apr 27;7:100161. doi: 10.1016/j.bbadva.2025.100161. eCollection 2025.
Glycosphingolipids are essential components of all eukaryotic cells and play a major role in a broad range of cellular and biological processes, including growth, cell signaling, survival, differentiation, and disease. Glycosphingolipid structural diversity arises from heterogeneity in both the glycan and lipid moieties. Most currently available computational tools for annotating mass spectrometry data for glycosphingolipids primarily focus on glycan structure analysis, although a tool for annotating intact glycosphingolipids has recently been reported. Developing tools that integrate both glycan-centric analytical approaches and dynamic lipid composition changes, which influence functional membrane characteristics, would be highly beneficial. We have developed a glycosphingolipid computational tool, named DANGO (Data ANnotation system for GlycolipidOmics), for the automated annotation of glycolipidomic datasets. DANGO supports processing and annotation of mass spectrometry data to characterize both the glycan and lipid (ceramide) moieties (http://www.ms-dango.org/). DANGO annotates MS datasets using a glycosphingolipid database, which is created from a curated or user-defined glycan and ceramide collection, and proposes candidate structures to the user that match the experimental data. DANGO is implemented as an extension of GRITS Toolbox (http://www.grits-toolbox.org), employing functionalities such as display routines for post-processing and organized annotation of data and relevant metadata. Implementation of a novel filter algorithm in DANGO reduces false-positive identifications, resulting in enhanced reliability and shortened computational time for acquiring glycosphingolipid structural annotation. The labor-intensive manual annotation of mass spectrometry datasets has been the only approach to confident assignment of glycosphingolipid structural identity. DANGO provides intuitive workflows for enhancing the annotation of glycosphingolipidomic data.
糖鞘脂是所有真核细胞的重要组成部分,在广泛的细胞和生物学过程中发挥着重要作用,包括生长、细胞信号传导、存活、分化和疾病。糖鞘脂的结构多样性源于聚糖和脂质部分的异质性。目前大多数用于注释糖鞘脂质谱数据的计算工具主要集中在聚糖结构分析上,尽管最近报道了一种用于注释完整糖鞘脂的工具。开发整合以聚糖为中心的分析方法和影响功能膜特性的动态脂质组成变化的工具将非常有益。我们开发了一种名为DANGO(糖脂组学数据注释系统)的糖鞘脂计算工具,用于自动注释糖脂组学数据集。DANGO支持对质谱数据进行处理和注释,以表征聚糖和脂质(神经酰胺)部分(http://www.ms-dango.org/)。DANGO使用糖鞘脂数据库注释质谱数据集,该数据库由经过整理或用户定义的聚糖和神经酰胺集合创建,并向用户提出与实验数据匹配的候选结构。DANGO作为GRITS Toolbox(http://www.grits-toolbox.org)的扩展实现,采用诸如后处理显示例程以及对数据和相关元数据进行有组织的注释等功能。DANGO中一种新颖的过滤算法的实现减少了误识别,从而提高了可靠性并缩短了获取糖鞘脂结构注释的计算时间。质谱数据集的人工注释一直是确定糖鞘脂结构身份的唯一方法。DANGO提供了直观的工作流程,以增强对糖脂组学数据的注释。