Suppr超能文献

通过选择性分子催化实现从水中有效电化学去除三氯乙烯。

Effective electrochemical trichloroethylene removal from water enabled by selective molecular catalysis.

作者信息

Gao Yuanzuo, Zhang Wanyu, Choi Chungseok, Shang Bo, Cheon Seonjeong, Meese Aidan Francis, Kim Jae-Hong, Long Donghui, Fortner John, Wang Hailiang

机构信息

Department of Chemistry, Yale University, New Haven, CT 06520, USA.

Energy Sciences Institute, Yale University, West Haven, CT 06516, USA.

出版信息

Carbon Futur. 2024 Sep;1(3). doi: 10.26599/cf.2024.9200015.

Abstract

Electrochemistry can provide a viable and sustainable way to treat water polluted by chlorinated volatile organic compounds. However, the removal and valorization of trichloroethylene (TCE) remains as a challenge due to the lack of suitable electrocatalysts with high selectivity and activity. We herein present a catalyst, comprising cobalt phthalocyanine (CoPc) molecules assembled onto multiwalled carbon nanotubes (CNTs), that can electrochemically decompose aqueously dissolved TCE into ethylene and chloride ions at record high rates with close to 100% Faradaic efficiency. Kinetics studies reveal that the rate-determining step is the first electron transfer without proton involvement. We further show that replacing the CNT support with reduced graphene oxide (rGO) can improve the TCE treatment efficacy because of the two-dimensional nanostructure of rGO and its stronger interaction with CoPc molecules. Incorporating the CoPc/rGO catalyst into an electrified membrane filtration device, we demonstrate 95% TCE removal from simulated water samples with environmentally relevant TCE and electrolyte concentrations.

摘要

电化学可以提供一种可行且可持续的方法来处理被氯化挥发性有机化合物污染的水。然而,由于缺乏具有高选择性和活性的合适电催化剂,三氯乙烯(TCE)的去除和增值仍然是一个挑战。我们在此展示一种催化剂,它由组装在多壁碳纳米管(CNT)上的钴酞菁(CoPc)分子组成,该催化剂能够以创纪录的高速度将水溶液中溶解的TCE电化学分解为乙烯和氯离子,法拉第效率接近100%。动力学研究表明,速率决定步骤是不涉及质子的首次电子转移。我们进一步表明,用还原氧化石墨烯(rGO)替代CNT载体可以提高TCE处理效果,这是因为rGO的二维纳米结构及其与CoPc分子更强的相互作用。将CoPc/rGO催化剂整合到带电膜过滤装置中,我们证明在与环境相关的TCE和电解质浓度下,从模拟水样中去除了95%的TCE。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa58/12143162/c9cc9c25f4c6/nihms-2072960-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验