文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肠道微生物群衍生的氧化三甲胺抑制SIRT1,以调节SM22α介导的平滑肌细胞炎症并促进动脉粥样硬化进展。

Gut microbiota-derived trimethylamine-N-oxide inhibits SIRT1 to regulate SM22α-mediated smooth muscle cell inflammation and promote atherosclerosis progression.

作者信息

Yin Yajuan, Wei Mei, Jiang Xiufang, Liu Mei, Shi Xiaocui, Zhang Xiao, Wang Le, Liu Gang, Zheng Mingqi, Ma Fangfang

机构信息

Department of Cardiology The First Hospital of Hebei Medical University Shijiazhuang Hebei China.

Department of Medical Affaires The First Hospital of Hebei Medical University Shijiazhuang Hebei China.

出版信息

J Cell Commun Signal. 2025 Jun 6;19(2):e70021. doi: 10.1002/ccs3.70021. eCollection 2025 Jun.


DOI:10.1002/ccs3.70021
PMID:40486531
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12143968/
Abstract

Atherosclerosis (AS) is a prevalent cardiovascular disease, and emerging evidence highlights the critical role of gut microbiota in its development. Trimethylamine-N-oxide (TMAO), a metabolite derived from gut microbiota, is thought to promote AS progression by regulating smooth muscle protein 22-alpha (SM22α)-mediated inflammation in vascular smooth muscle cells. This study aims to explore the molecular mechanisms of TMAO in AS through multi-omics analysis, particularly its effects on SIRT1 inhibition and SM22α modulation. 16S ribosomal RNA sequencing revealed an altered gut microbiota composition in AS mice, characterized by increased Bacteroides and decreased Firmicutes. Metabolomics analysis indicated elevated levels of TMAO in AS mice. Transcriptomic data and cell experiments further confirmed that TMAO promotes AS by regulating SM22α-mediated inflammation via SIRT1 regulation. These findings suggest that TMAO accelerates progression through the SIRT1 and SM22α-related pathways, offering novel therapeutic targets for AS intervention.

摘要

动脉粥样硬化(AS)是一种常见的心血管疾病,新出现的证据突出了肠道微生物群在其发展中的关键作用。氧化三甲胺(TMAO)是一种源自肠道微生物群的代谢产物,被认为通过调节血管平滑肌细胞中平滑肌蛋白22-α(SM22α)介导的炎症来促进AS进展。本研究旨在通过多组学分析探索TMAO在AS中的分子机制,特别是其对SIRT1抑制和SM22α调节的影响。16S核糖体RNA测序显示AS小鼠的肠道微生物群组成发生改变,其特征是拟杆菌增加而厚壁菌减少。代谢组学分析表明AS小鼠中TMAO水平升高。转录组数据和细胞实验进一步证实,TMAO通过SIRT1调节来调节SM22α介导的炎症,从而促进AS。这些发现表明,TMAO通过SIRT1和SM22α相关途径加速进展,为AS干预提供了新的治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17de/12143968/c4c41071d04d/CCS3-19-e70021-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17de/12143968/64d994c1be9f/CCS3-19-e70021-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17de/12143968/8a464094a4a3/CCS3-19-e70021-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17de/12143968/28197a736923/CCS3-19-e70021-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17de/12143968/c746fc63c202/CCS3-19-e70021-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17de/12143968/a493456d0125/CCS3-19-e70021-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17de/12143968/b4f6ef7560e1/CCS3-19-e70021-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17de/12143968/32f569500db3/CCS3-19-e70021-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17de/12143968/63b35ac38610/CCS3-19-e70021-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17de/12143968/28d60a4438d5/CCS3-19-e70021-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17de/12143968/215a8c0285b6/CCS3-19-e70021-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17de/12143968/c4c41071d04d/CCS3-19-e70021-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17de/12143968/64d994c1be9f/CCS3-19-e70021-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17de/12143968/8a464094a4a3/CCS3-19-e70021-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17de/12143968/28197a736923/CCS3-19-e70021-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17de/12143968/c746fc63c202/CCS3-19-e70021-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17de/12143968/a493456d0125/CCS3-19-e70021-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17de/12143968/b4f6ef7560e1/CCS3-19-e70021-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17de/12143968/32f569500db3/CCS3-19-e70021-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17de/12143968/63b35ac38610/CCS3-19-e70021-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17de/12143968/28d60a4438d5/CCS3-19-e70021-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17de/12143968/215a8c0285b6/CCS3-19-e70021-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17de/12143968/c4c41071d04d/CCS3-19-e70021-g009.jpg

相似文献

[1]
Gut microbiota-derived trimethylamine-N-oxide inhibits SIRT1 to regulate SM22α-mediated smooth muscle cell inflammation and promote atherosclerosis progression.

J Cell Commun Signal. 2025-6-6

[2]
Gut-Flora-Dependent Metabolite Trimethylamine-N-Oxide Promotes Atherosclerosis-Associated Inflammation Responses by Indirect ROS Stimulation and Signaling Involving AMPK and SIRT1.

Nutrients. 2022-8-15

[3]
Resveratrol Attenuates Trimethylamine-N-Oxide (TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota.

mBio. 2016-4-5

[4]
Anti-atherosclerotic effects of geraniin through the gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway in mice.

Phytomedicine. 2022-7

[5]
Gut microbiota-derived trimethylamine N-Oxide: a novel target for the treatment of preeclampsia.

Gut Microbes. 2024

[6]
Shizukaol C alleviates trimethylamine oxide-induced inflammation through activating Keap1-Nrf2-GSTpi pathway in vascular smooth muscle cell.

Phytomedicine. 2024-6

[7]
A red wine intervention does not modify plasma trimethylamine N-oxide but is associated with broad shifts in the plasma metabolome and gut microbiota composition.

Am J Clin Nutr. 2022-12-19

[8]
Suyin Detoxification Granule alleviates trimethylamine N-oxide-induced tubular ferroptosis and renal fibrosis to prevent chronic kidney disease progression.

Phytomedicine. 2024-12

[9]
CKII-SIRT1-SM22α loop evokes a self-limited inflammatory response in vascular smooth muscle cells.

Cardiovasc Res. 2017-8-1

[10]
Mechanisms and Intervention Strategies of Trimethylamine N-Oxide in Abdominal Aortic Aneurysm.

Cardiology. 2025-5-10

本文引用的文献

[1]
Blood Stream Microbiota Dysbiosis Establishing New Research Standards in Cardio-Metabolic Diseases, A Meta-Analysis Study.

Microorganisms. 2023-3-17

[2]
Gut Microbiota-Derived TMAO: A Causal Factor Promoting Atherosclerotic Cardiovascular Disease?

Int J Mol Sci. 2023-1-18

[3]
Multiple aspects of lymphatic dysfunction in an mouse model of hypercholesterolemia.

Front Physiol. 2023-1-6

[4]
An animal model of EPO-induced abdominal aortic aneurysm in WT and Apoe mice.

STAR Protoc. 2023-3-17

[5]
Genus unclassified_Muribaculaceae and microbiota-derived butyrate and indole-3-propionic acid are involved in benzene-induced hematopoietic injury in mice.

Chemosphere. 2023-2

[6]
The Gene at the 15q26 Coronary-Artery-Disease Locus Inhibits Atherosclerosis.

Circ Res. 2022-12-2

[7]
The Microbiota-Gut-Brain Axis in Psychiatric Disorders.

Int J Mol Sci. 2022-9-24

[8]
Integrated transcriptomics and metabolomics analysis reveals that C3 and C5 are vital targets of DuZhi Wan in protecting against cerebral ischemic injury.

Biomed Pharmacother. 2022-11

[9]
The SIRT1-HMGB1 axis: Therapeutic potential to ameliorate inflammatory responses and tumor occurrence.

Front Cell Dev Biol. 2022-8-19

[10]
Inhibition of Trimethylamine N-Oxide Attenuates Neointimal Formation Through Reduction of Inflammasome and Oxidative Stress in a Mouse Model of Carotid Artery Ligation.

Antioxid Redox Signal. 2023-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索