Cardoen Ben, Ben Yedder Hanene, Nabi Ivan Robert, Hamarneh Ghassan
Simon Fraser University, School of Computing Science, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
University of British Columbia, Department of Cellular & Physiological Sciences, Faculty of Medicine, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
Patterns (N Y). 2025 Mar 27;6(5):101181. doi: 10.1016/j.patter.2025.101181. eCollection 2025 May 9.
Cellular function is defined by pathways that, in turn, are determined by distance-mediated interactions between and within subcellular organelles, protein complexes, and macromolecular structures. Multichannel super-resolution microscopy (SRM) is uniquely placed to quantify distance-mediated interactions at the nanometer scale with its ability to label individual biological targets with independent markers that fluoresce in different spectra. We review novel computational methods that quantify interaction from multichannel SRM data in both point-cloud and voxel form. We discuss in detail SRM-specific factors that can compromise interaction analysis and decompose different classes of interactions based on distinct representative cell biology use cases, the underappreciated non-linear physics of their scale, and the development of specialized methods for those use cases. An abstract mathematical model is introduced to facilitate the comparison and evaluation of interaction reconstruction methods and to quantify the computational bottlenecks. We discuss the different strategies for validation of interaction analysis results with sparse or incomplete ground-truth data. Finally, evolving trends and future directions are presented, highlighting the "multichannel gap," where interaction analysis is trailing behind the rapid increase in novel modes of multichannel SRM acquisitions.
细胞功能由各种通路所定义,而这些通路又由亚细胞器、蛋白质复合物和大分子结构之间及内部的距离介导相互作用所决定。多通道超分辨率显微镜(SRM)凭借其用在不同光谱中发出荧光的独立标记物标记单个生物靶点的能力,在纳米尺度上量化距离介导的相互作用方面具有独特优势。我们综述了从点云形式和体素形式的多通道SRM数据中量化相互作用的新型计算方法。我们详细讨论了可能影响相互作用分析的特定于SRM的因素,并根据不同的代表性细胞生物学应用案例、其尺度下未被充分认识的非线性物理学以及针对这些应用案例开发的专门方法,对不同类型的相互作用进行了分解。引入了一个抽象数学模型,以促进相互作用重建方法的比较和评估,并量化计算瓶颈。我们讨论了使用稀疏或不完整的真实数据验证相互作用分析结果的不同策略。最后,介绍了不断发展的趋势和未来方向,突出了“多通道差距”,即相互作用分析落后于多通道SRM采集新模态快速增长的情况。