Suppr超能文献

人工智能分析超分辨率显微镜:在没有真值的情况下进行生物学发现。

AI analysis of super-resolution microscopy: Biological discovery in the absence of ground truth.

机构信息

Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada.

School of Biomedical Engineering, University of British Columbia, Vancouver, Canada.

出版信息

J Cell Biol. 2024 Aug 5;223(8). doi: 10.1083/jcb.202311073. Epub 2024 Jun 12.

Abstract

Super-resolution microscopy, or nanoscopy, enables the use of fluorescent-based molecular localization tools to study molecular structure at the nanoscale level in the intact cell, bridging the mesoscale gap to classical structural biology methodologies. Analysis of super-resolution data by artificial intelligence (AI), such as machine learning, offers tremendous potential for the discovery of new biology, that, by definition, is not known and lacks ground truth. Herein, we describe the application of weakly supervised paradigms to super-resolution microscopy and its potential to enable the accelerated exploration of the nanoscale architecture of subcellular macromolecules and organelles.

摘要

超分辨率显微镜,或纳米显微镜,使基于荧光的分子定位工具能够在完整细胞中研究纳米级别的分子结构,从而弥合经典结构生物学方法学中的中间尺度差距。人工智能(AI),如机器学习,对超分辨率数据的分析为发现新生物学提供了巨大的潜力,这些生物学在定义上是未知的,缺乏事实依据。本文描述了弱监督范式在超分辨率显微镜中的应用及其在加速探索亚细胞大分子和细胞器的纳米结构方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/490c/11169916/c7715fc66587/JCB_202311073_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验