Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
School of Biomedical Engineering, University of British Columbia, Vancouver, Canada.
J Cell Biol. 2024 Aug 5;223(8). doi: 10.1083/jcb.202311073. Epub 2024 Jun 12.
Super-resolution microscopy, or nanoscopy, enables the use of fluorescent-based molecular localization tools to study molecular structure at the nanoscale level in the intact cell, bridging the mesoscale gap to classical structural biology methodologies. Analysis of super-resolution data by artificial intelligence (AI), such as machine learning, offers tremendous potential for the discovery of new biology, that, by definition, is not known and lacks ground truth. Herein, we describe the application of weakly supervised paradigms to super-resolution microscopy and its potential to enable the accelerated exploration of the nanoscale architecture of subcellular macromolecules and organelles.
超分辨率显微镜,或纳米显微镜,使基于荧光的分子定位工具能够在完整细胞中研究纳米级别的分子结构,从而弥合经典结构生物学方法学中的中间尺度差距。人工智能(AI),如机器学习,对超分辨率数据的分析为发现新生物学提供了巨大的潜力,这些生物学在定义上是未知的,缺乏事实依据。本文描述了弱监督范式在超分辨率显微镜中的应用及其在加速探索亚细胞大分子和细胞器的纳米结构方面的潜力。