Cao Chenfeng, Gambetta Filippo Maria, Montanaro Ashley, Santos Raul A
Phasecraft Ltd, London, United Kingdom.
Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, Berlin, Germany.
npj Quantum Inf. 2025;11(1):93. doi: 10.1038/s41534-025-01038-5. Epub 2025 Jun 4.
Understanding quantum phase transitions in physical systems is fundamental to characterize their behavior at low temperatures. Achieving this requires both accessing good approximations to the ground state and identifying order parameters to distinguish different phases. Addressing these challenges, our work introduces a hybrid algorithm that combines quantum optimization with classical machine learning. This approach leverages the capability of near-term quantum computers to prepare locally trapped states through finite optimization. Specifically, we apply LASSO for identifying conventional phase transitions and the Transformer model for topological transitions, utilizing these with a sliding window scan of Hamiltonian parameters to learn appropriate order parameters and locate critical points. We validated the method with numerical simulations and real-hardware experiments on Rigetti's Ankaa 9Q-1 quantum computer. This protocol provides a framework for investigating quantum phase transitions with shallow circuits, offering enhanced efficiency and, in some settings, higher precision-thus contributing to the broader effort to integrate near-term quantum computing and machine learning.
理解物理系统中的量子相变对于表征其在低温下的行为至关重要。要做到这一点,既需要获得对基态的良好近似,又需要识别序参量以区分不同的相。为应对这些挑战,我们的工作引入了一种将量子优化与经典机器学习相结合的混合算法。这种方法利用近期量子计算机通过有限优化制备局部捕获态的能力。具体而言,我们应用套索算法识别传统相变,应用Transformer模型识别拓扑相变,并将它们与哈密顿量参数的滑动窗口扫描相结合,以学习合适的序参量并定位临界点。我们通过在Rigetti的Ankaa 9Q-1量子计算机上进行数值模拟和实际硬件实验对该方法进行了验证。该协议提供了一个使用浅电路研究量子相变的框架,提高了效率,并且在某些情况下提高了精度,从而有助于将近期量子计算和机器学习集成的更广泛努力。