Sun Shuo, Kumar Chandan, Shen Kevin, Shishenina Elvira, Mendl Christian B
School of Computation, Information and Technology, Technical University of Munich, Boltzmannstraße 3, Garching 85748, Germany.
BMW Group Central Invention, Munich 80788, Germany.
J Phys Chem A. 2025 Mar 13;129(10):2379-2386. doi: 10.1021/acs.jpca.4c07045. Epub 2025 Mar 3.
Quantum computers have the potential to efficiently solve the electronic structure problem but are currently limited by noise and shallow circuits. We present an enhanced Variational Quantum Eigensolver (VQE) ansatz based on the Qubit Coupled Cluster (QCC) approach that requires optimization of only parameters, where is the number of Pauli string generators, rather than the typical + 2 parameters, where is the number of qubits. We evaluate the ground state energies and molecular dissociation curves of strongly correlated molecules, namely O and Li, using active spaces of varying sizes in conjunction with our enhanced QCC ansatz, Unitary Coupled Cluster Single-Double (UCCSD) ansatz, and the classical Coupled Cluster Singles and Doubles (CCSD) method. Compared to UCCSD, our approach significantly reduces the number of parameters while maintaining high accuracy. Numerical simulations demonstrate the effectiveness of our approach, and experiments on superconducting and trapped-ion quantum computers showcase its practicality on real hardware. By eliminating the need for symmetry-restoring gates and reducing the number of parameters, our enhanced QCC ansatz enables accurate quantum chemistry calculations on near-term quantum devices for strongly correlated systems.
量子计算机有潜力高效解决电子结构问题,但目前受噪声和浅电路限制。我们提出一种基于量子比特耦合簇(QCC)方法的增强变分量子本征求解器(VQE)近似,该近似仅需优化(p)个参数,其中(p)是泡利串生成器的数量,而非典型的(n^2 + 2)个参数,其中(n)是量子比特的数量。我们使用不同大小的活性空间,结合我们的增强QCC近似、幺正耦合簇单双激发(UCCSD)近似以及经典耦合簇单双激发(CCSD)方法,评估强关联分子(即O和Li)的基态能量和分子解离曲线。与UCCSD相比,我们的方法在保持高精度的同时显著减少了参数数量。数值模拟证明了我们方法的有效性,在超导和囚禁离子量子计算机上的实验展示了其在实际硬件上的实用性。通过消除对对称性恢复门的需求并减少参数数量,我们的增强QCC近似能够在近期量子设备上对强关联系统进行精确的量子化学计算。