Suppr超能文献

用于活动性肺结核诊断的四个自噬相关基因特征的开发。

Development of a four autophagy-related gene signature for active tuberculosis diagnosis.

作者信息

Ren Baoyan, Jia Feng, Fang Qixun, Xu Jingping, Lin Kangfeng, Huang Renhui, Liu Zhenqiong, Xing Xingan

机构信息

Yaneng Bioscience Co. Ltd., Shenzhen, Guangdong, China.

Department of Clinical Laboratory, Jiangxi Provincial Chest Hospital, Nanchang, Jiangxi, China.

出版信息

Front Cell Infect Microbiol. 2025 May 23;15:1600348. doi: 10.3389/fcimb.2025.1600348. eCollection 2025.

Abstract

BACKGROUND

Tuberculosis (TB) diagnostics urgently require non-sputum biomarkers to address the limitations of conventional methods in distinguishing active TB (ATB) from latent infection (LTBI), healthy controls (HCs), and TB-mimicking diseases (ODs, other diseases).

METHODS

Transcriptomic data from GSE83456 and GSE152532 were combined to form the selection dataset. Marker genes were identified from differentially expressed autophagy-related genes using a Random Forest classifier. The optimal gene signature was selected based on optimal performance through a linear Support Vector Machine (SVM) classifier with cross-validation. The signature was subsequently evaluated in six independent evaluation datasets and validated using whole blood samples collected from 70 participants.

RESULTS

We identified a novel four-gene autophagy-related signature (, , , ) in the selection dataset. This signature demonstrated robust diagnostic accuracy across multiple evaluation datasets: Area Under the Curve (AUC) 0.83-0.98 for ATB vs. LTBI and 0.82-0.94 for ATB vs. HCs. Crucially, it maintained high specificity (AUC 0.89-0.90) against ODs. RT-qPCR validation in whole blood samples confirmed elevated expression in ATB, while an SVM model achieved promising differentiation (AUC 0.86 for ATB vs. LTBI and AUC 0.99 for ATB vs. HCs).

CONCLUSIONS

Our findings yielded a four-gene signature in whole blood that is robustly diagnostic for ATB, validated across multiple evaluation datasets and clinical samples. The autophagy-driven specificity and PCR-compatible design of this signature offer a blood-based, cost-effective strategy to enhance TB detection, addressing WHO-aligned diagnostic needs.

摘要

背景

结核病(TB)诊断迫切需要非痰液生物标志物,以解决传统方法在区分活动性结核病(ATB)与潜伏感染(LTBI)、健康对照(HCs)以及类似结核病的疾病(ODs,其他疾病)方面的局限性。

方法

将来自GSE83456和GSE152532的转录组数据合并以形成选择数据集。使用随机森林分类器从差异表达的自噬相关基因中鉴定标记基因。通过具有交叉验证的线性支持向量机(SVM)分类器,基于最佳性能选择最佳基因特征。随后在六个独立的评估数据集中评估该特征,并使用从70名参与者收集的全血样本进行验证。

结果

我们在选择数据集中鉴定出一种新的四基因自噬相关特征(,,,)。该特征在多个评估数据集中显示出强大的诊断准确性:ATB与LTBI相比,曲线下面积(AUC)为0.83 - 0.98;ATB与HCs相比,AUC为0.82 - 0.94。至关重要的是,它对ODs保持高特异性(AUC 0.89 - 0.90)。全血样本中的RT - qPCR验证证实了ATB中表达升高,而SVM模型实现了有前景的区分(ATB与LTBI相比,AUC为0.86;ATB与HCs相比,AUC为0.99)。

结论

我们的研究结果在全血中产生了一种四基因特征,对ATB具有强大的诊断能力,在多个评估数据集和临床样本中得到验证。该特征由自噬驱动的特异性和与PCR兼容的设计提供了一种基于血液的、具有成本效益的策略,以加强结核病检测,满足与世界卫生组织一致的诊断需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0ed/12141863/6d5704e2dfb8/fcimb-15-1600348-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验