文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Facilitating the dry reforming of methane with interfacial synergistic catalysis in an Ir@CeO catalyst.

作者信息

Wang Hui, Cui Guoqing, Lu Hao, Li Zeyang, Wang Lei, Meng Hao, Li Jiong, Yan Hong, Yang Yusen, Wei Min

机构信息

State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China.

State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), 102249, Beijing, P. R. China.

出版信息

Nat Commun. 2024 May 4;15(1):3765. doi: 10.1038/s41467-024-48122-6.


DOI:10.1038/s41467-024-48122-6
PMID:38704402
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11069590/
Abstract

The dry reforming of methane provides an attractive route to convert greenhouse gases (CH and CO) into valuable syngas, so as to resolve the carbon cycle and environmental issues. However, the development of high-performance catalysts remains a huge challenge. Herein, we report a 0.6% Ir/CeO catalyst with a metal-support interface structure which exhibits high CH (72%) and CO (82%) conversion and a CH reaction rate of ~973 μmol g s which is stable over 100 h at 700 °C. The performance of the catalyst is close to the state-of-the-art in this area of research. A combination of in situ spectroscopic characterization and theoretical calculations highlight the importance of the interfacial structure as an intrinsic active center to facilitate the CH dissociation (the rate-determining step) and the CH* oxidation to CHO* without coke formation, which accounts for the long-term stability. The catalyst in this work has a potential application prospect in the field of high-value utilization of carbon resources.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a852/11069590/9e8f87c47d22/41467_2024_48122_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a852/11069590/ae74e38680cf/41467_2024_48122_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a852/11069590/da815e20c11f/41467_2024_48122_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a852/11069590/c48523e7c48b/41467_2024_48122_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a852/11069590/7851b6b60f27/41467_2024_48122_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a852/11069590/9e8f87c47d22/41467_2024_48122_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a852/11069590/ae74e38680cf/41467_2024_48122_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a852/11069590/da815e20c11f/41467_2024_48122_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a852/11069590/c48523e7c48b/41467_2024_48122_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a852/11069590/7851b6b60f27/41467_2024_48122_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a852/11069590/9e8f87c47d22/41467_2024_48122_Fig5_HTML.jpg

相似文献

[1]
Facilitating the dry reforming of methane with interfacial synergistic catalysis in an Ir@CeO catalyst.

Nat Commun. 2024-5-4

[2]
Metal-Support Interactions and C1 Chemistry: Transforming Pt-CeO into a Highly Active and Stable Catalyst for the Conversion of Carbon Dioxide and Methane.

ACS Catal. 2021-2-5

[3]
Coke-Resistant Ni/CeZrO Catalysts for Dry Reforming of Methane to Produce Hydrogen-Rich Syngas.

Nanomaterials (Basel). 2022-5-4

[4]
Integrated CO Capture and Dry Reforming of CH to Syngas: A Review.

Langmuir. 2024-7-23

[5]
Active Exsolved Metal-Oxide Interfaces in Porous Single-Crystalline Ceria Monoliths for Efficient and Durable CH /CO Reforming.

Angew Chem Int Ed Engl. 2022-1-3

[6]
Impact of preparation method on nickel speciation and methane dry reforming performance of Ni/SiO catalysts.

Front Chem. 2022-9-1

[7]
Synergistic effects of Ni-Fe alloy catalysts on dry reforming of methane at low temperatures in an electric field.

RSC Adv. 2022-10-5

[8]
In situ NAP-XPS spectroscopy during methane dry reforming on ZrO/Pt(1 1 1) inverse model catalyst.

J Phys Condens Matter. 2018-7-4

[9]
Atomically dispersed nickel as coke-resistant active sites for methane dry reforming.

Nat Commun. 2019-11-15

[10]
Efficient dry reforming of methane realized by photoinduced acceleration of oxygen migration rate.

J Colloid Interface Sci. 2024-12-15

引用本文的文献

[1]
Unlocking CO conversion potential with single atom catalysts and machine learning in energy application.

iScience. 2025-3-28

[2]
Enhanced dry reforming of methane over nickel catalysts supported on zirconia coated mesoporous silica.

iScience. 2025-5-3

[3]
Size-dependent metal-support interactions in Co/CeO-YO catalysts for enhanced methane dry reforming.

RSC Adv. 2025-4-7

[4]
Highly efficient Ni/Ac-AlO catalysts in the dry reforming of methane: influence of acetic acid treatment and Ni loading.

RSC Adv. 2024-12-10

本文引用的文献

[1]
Electrochemical Carbon Dioxide Capture and Concentration.

Chem Rev. 2023-7-12

[2]
A strong bimetal-support interaction in ethanol steam reforming.

Nat Commun. 2023-6-2

[3]
Enhanced hybrid photocatalytic dry reforming using a phosphated Ni-CeO nanorod heterostructure.

Nat Commun. 2023-3-15

[4]
Engineering Heterogeneous Catalysis with Strong Metal-Support Interactions: Characterization, Theory and Manipulation.

Angew Chem Int Ed Engl. 2023-1-23

[5]
Flame-made ternary Pd-InO-ZrO catalyst with enhanced oxygen vacancy generation for CO hydrogenation to methanol.

Nat Commun. 2022-9-24

[6]
Active Exsolved Metal-Oxide Interfaces in Porous Single-Crystalline Ceria Monoliths for Efficient and Durable CH /CO Reforming.

Angew Chem Int Ed Engl. 2022-1-3

[7]
Dry Reforming of CH /CO by Stable Ni Nanocrystals on Porous Single-Crystalline MgO Monoliths at Reduced Temperature.

Angew Chem Int Ed Engl. 2021-8-16

[8]
Enhancing Thermocatalytic Activities by Upshifting the d-Band Center of Exsolved Co-Ni-Fe Ternary Alloy Nanoparticles for the Dry Reforming of Methane.

Angew Chem Int Ed Engl. 2021-7-12

[9]
Inverse ZrO/Cu as a highly efficient methanol synthesis catalyst from CO hydrogenation.

Nat Commun. 2020-11-13

[10]
Highly Selective Hydrogenation of CO to Ethanol via Designed Bifunctional Ir-InO Single-Atom Catalyst.

J Am Chem Soc. 2020-11-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索