Suppr超能文献

使用机器学习预测胃癌生存率:一项系统综述。

Predicting gastric cancer survival using machine learning: A systematic review.

作者信息

Wang Hong-Niu, An Jia-Hao, Wang Fu-Qiang, Hu Wen-Qing, Zong Liang

机构信息

Department of Gastrointestinal Surgery, Changzhi People's Hospital, The Affiliated Hospital of Changzhi Medical College, Changzhi 046000, Shanxi Province, China.

Graduate School of Medicine, Changzhi Medical College, Changzhi 046000, Shanxi Province, China.

出版信息

World J Gastrointest Oncol. 2025 May 15;17(5):103804. doi: 10.4251/wjgo.v17.i5.103804.

Abstract

BACKGROUND

Gastric cancer (GC) has a poor prognosis, and the accurate prediction of patient survival remains a significant challenge in oncology. Machine learning (ML) has emerged as a promising tool for survival prediction, though concerns regarding model interpretability, reliance on retrospective data, and variability in performance persist.

AIM

To evaluate ML applications in predicting GC survival and to highlight key limitations in current methods.

METHODS

A comprehensive search of PubMed and Web of Science in November 2024 identified 16 relevant studies published after 2019. The most frequently used ML models were deep learning (37.5%), random forests (37.5%), support vector machines (31.25%), and ensemble methods (18.75%). The dataset sizes varied from 134 to 14177 patients, with nine studies incorporating external validation.

RESULTS

The reported area under the curve values were 0.669-0.980 for overall survival, 0.920-0.960 for cancer-specific survival, and 0.710-0.856 for disease-free survival. These results highlight the potential of ML-based models to improve clinical practice by enabling personalized treatment planning and risk stratification.

CONCLUSION

Despite challenges concerning retrospective studies and a lack of interpretability, ML models show promise; prospective trials and multidimensional data integration are recommended for improving their clinical applicability.

摘要

背景

胃癌(GC)预后较差,准确预测患者生存率仍然是肿瘤学中的一项重大挑战。机器学习(ML)已成为一种有前景的生存预测工具,不过关于模型可解释性、对回顾性数据的依赖以及性能变异性等问题依然存在。

目的

评估机器学习在预测胃癌生存率方面的应用,并突出当前方法的关键局限性。

方法

2024年11月对PubMed和Web of Science进行全面检索,确定了2019年后发表的16项相关研究。最常用的机器学习模型是深度学习(37.5%)、随机森林(37.5%)、支持向量机(31.25%)和集成方法(18.75%)。数据集规模从134名至14177名患者不等,有9项研究纳入了外部验证。

结果

报告的总生存曲线下面积值为0.669 - 0.980,癌症特异性生存曲线下面积值为0.920 - 0.960,无病生存曲线下面积值为0.710 - 0.856。这些结果凸显了基于机器学习的模型通过实现个性化治疗规划和风险分层来改善临床实践的潜力。

结论

尽管存在回顾性研究方面的挑战以及缺乏可解释性,但机器学习模型显示出前景;建议进行前瞻性试验和多维数据整合以提高其临床适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f8/12142261/7e3adcc7b9c9/103804-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验