Suppr超能文献

胃癌人工智能工具:一种用于胃癌诊断和预后的临床决策支持工具。

GastricAITool: A Clinical Decision Support Tool for the Diagnosis and Prognosis of Gastric Cancer.

作者信息

Aznar-Gimeno Rocío, García-González María Asunción, Muñoz-Sierra Rubén, Carrera-Lasfuentes Patricia, Rodrigálvarez-Chamarro María de la Vega, González-Muñoz Carlos, Meléndez-Estrada Enrique, Lanas Ángel, Del Hoyo-Alonso Rafael

机构信息

Department of Big Data and Cognitive Systems, Instituto Tecnológico de Aragón, ITA, María de Luna 7-8, 50018 Zaragoza, Spain.

Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain.

出版信息

Biomedicines. 2024 Sep 23;12(9):2162. doi: 10.3390/biomedicines12092162.

Abstract

BACKGROUND/OBJECTIVE: Gastric cancer (GC) is a complex disease representing a significant global health concern. Advanced tools for the early diagnosis and prediction of adverse outcomes are crucial. In this context, artificial intelligence (AI) plays a fundamental role. The aim of this work was to develop a diagnostic and prognostic tool for GC, providing support to clinicians in critical decision-making and enabling personalised strategies.

METHODS

Different machine learning and deep learning techniques were explored to build diagnostic and prognostic models, ensuring model interpretability and transparency through explainable AI methods. These models were developed and cross-validated using data from 590 Spanish Caucasian patients with primary GC and 633 cancer-free individuals. Up to 261 variables were analysed, including demographic, environmental, clinical, tumoral, and genetic data. Variables such as infection, tobacco use, family history of GC, TNM staging, metastasis, tumour location, treatment received, gender, age, and genetic factors (single nucleotide polymorphisms) were selected as inputs due to their association with the risk and progression of the disease.

RESULTS

The XGBoost algorithm (version 1.7.4) achieved the best performance for diagnosis, with an AUC value of 0.68 using 5-fold cross-validation. As for prognosis, the Random Survival Forest algorithm achieved a C-index of 0.77. Of interest, the incorporation of genetic data into the clinical-demographics models significantly increased discriminatory ability in both diagnostic and prognostic models.

CONCLUSIONS

This article presents GastricAITool, a simple and intuitive decision support tool for the diagnosis and prognosis of GC.

摘要

背景/目的:胃癌(GC)是一种复杂疾病,是全球重大的健康问题。用于早期诊断和预测不良结局的先进工具至关重要。在这种背景下,人工智能(AI)发挥着重要作用。这项工作的目的是开发一种用于胃癌的诊断和预后工具,为临床医生的关键决策提供支持,并实现个性化策略。

方法

探索了不同的机器学习和深度学习技术来构建诊断和预后模型,通过可解释的人工智能方法确保模型的可解释性和透明度。这些模型使用来自590名西班牙白种原发性胃癌患者和633名无癌个体的数据进行开发和交叉验证。分析了多达261个变量,包括人口统计学、环境、临床、肿瘤和遗传数据。由于感染、吸烟、胃癌家族史、TNM分期、转移、肿瘤位置、接受的治疗、性别、年龄和遗传因素(单核苷酸多态性)等变量与疾病风险和进展相关,因此被选作输入变量。

结果

XGBoost算法(版本1.7.4)在诊断方面表现最佳,5折交叉验证的AUC值为0.68。在预后方面,随机生存森林算法的C指数为0.77。有趣的是,将遗传数据纳入临床人口统计学模型显著提高了诊断和预后模型的辨别能力。

结论

本文介绍了GastricAITool,这是一种用于胃癌诊断和预后的简单直观的决策支持工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb8/11429470/2ae01b94528b/biomedicines-12-02162-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验