Suppr超能文献

基于机器学习的肿瘤内异质性标志物预测胃腺癌的预后和免疫治疗获益。

Machine learning based intratumor heterogeneity signature for predicting prognosis and immunotherapy benefit in stomach adenocarcinoma.

机构信息

Department of Internal Medicine, Cancer Hospital of Shantou University Medical College, Shantou, 515000, China.

Department of Gynaecology and Obstetrics, Shantou Central Hospital, Shantou, 515000, China.

出版信息

Sci Rep. 2024 Oct 7;14(1):23328. doi: 10.1038/s41598-024-74907-2.

Abstract

Stomach adenocarcinoma (STAD) is a prevalent malignancy that is highly aggressive and heterogeneous. Intratumor heterogeneity (ITH) showed strong link to tumor progression and metastasis. High ITH may promote tumor evolution. An ITH-related signature (IRS) was created using as integrative technique including 10 machine learning methods based on TCGA, GSE15459, GSE26253, GSE62254 and GSE84437 datasets. The relevance of IRS in predicting the advantages of immunotherapy was assessed using a number of prediction scores and three immunotherapy datasets (GSE78220, IMvigor210 and GSE91061). Vitro experiments were performed to verify the biological functions of AKR1B1. The RSF + Enet (alpha = 0.1) projected model was proposed as the ideal IRS because it had the highest average C-index. The IRS demonstrated a strong performance in serving as an independent risk factor for the clinical outcome of STAD patients. It performed exceptionally well in predicting the overall survival rate of STAD patients, as seen by the TCGA cohort's AUC of 1-, 3-, and 5-year ROC curves, which were 0.689, 0.683, and 0.669, respectively. A low IRS score demonstrated a superior response to immunotherapy, as seen by a lower TIDE score, lower immune escape score, greater TMB score, higher PD1&CTLA4 immunophenoscore, higher response rate, and improved prognosis. Common chemotherapeutic and targeted treatment regimens had lower IC50 values in the group with higher IRS scores. Vitro experiment showed that AKR1B1 was upregulated in STAD and knockdown of AKR1B1 obviously suppressed tumor cell proliferation and migration. The present investigation produced the best IRS for STAD, which may be applied to prognostication, risk stratification, and therapy planning for STAD patients.

摘要

胃腺癌(STAD)是一种常见的恶性肿瘤,具有高度侵袭性和异质性。肿瘤内异质性(ITH)与肿瘤进展和转移密切相关。高 ITH 可能促进肿瘤进化。使用包括基于 TCGA、GSE15459、GSE26253、GSE62254 和 GSE84437 数据集的 10 种机器学习方法的整合技术创建了 ITH 相关特征(IRS)。使用多个预测评分和三个免疫治疗数据集(GSE78220、IMvigor210 和 GSE91061)评估 IRS 在预测免疫治疗优势中的相关性。进行体外实验验证 AKR1B1 的生物学功能。提出了 RSF+Enet(alpha=0.1)预测模型作为理想的 IRS,因为它具有最高的平均 C 指数。IRS 作为 STAD 患者临床结局的独立危险因素具有很强的性能。在预测 STAD 患者的总生存率方面表现出色,TCGA 队列的 1 年、3 年和 5 年 ROC 曲线的 AUC 分别为 0.689、0.683 和 0.669。低 IRS 评分表明对免疫治疗的反应更好,TIDE 评分更低,免疫逃逸评分更低,TMB 评分更高,PD1&CTLA4 免疫表型评分更高,反应率更高,预后更好。在 IRS 评分较高的组中,常见的化疗和靶向治疗方案的 IC50 值较低。体外实验表明 AKR1B1 在 STAD 中上调,AKR1B1 的敲低明显抑制肿瘤细胞增殖和迁移。本研究为 STAD 生成了最佳的 IRS,可用于 STAD 患者的预后、风险分层和治疗计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b177/11458769/e5d62773707e/41598_2024_74907_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验