Wang Pengyi, Kang Fan, Huang Xiangbin, Luo Zhipeng, Zou Jing, Yang Min, Sun Meng, Yu Xin, Zeng Huabin
College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China.
Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, China.
Environ Sci Ecotechnol. 2025 May 2;25:100566. doi: 10.1016/j.ese.2025.100566. eCollection 2025 May.
Efficient management of temporal latency and spatial heterogeneity remains a critical challenge in sensor-based pH regulation for smart water management, primarily due to inherent response delays and mass transfer constraints. In oxidation systems with dynamic pH environments, delayed responses can lead to issues such as cyanide release, unwanted side reactions, or pipe damage. To address these challenges, we propose a "pause-then-adjust" control strategy, exploiting the pH-responsive generation of hydroxyl radicals (OH) in a modified Fenton reaction system. This system utilizes hydroxylamine as an electron donor and ethylenediaminetetraacetic acid (EDTA) as a stabilizer for iron ions. Within the pH range of 7.0-10.0, the coexistence of [Fe-EDTA] and [Fe-OH-EDTA] complexes facilitates efficient electron transfer, resulting in the selective and sustained production of OH radicals. The inherent pH-responsiveness of this strategy enables rapid and spatially coherent adjustments, offering a robust supplementary method for addressing complex and evolving requirements in advanced water treatment systems.
对于智能水管理中基于传感器的pH调节而言,有效管理时间延迟和空间异质性仍然是一项关键挑战,这主要是由于固有的响应延迟和传质限制。在具有动态pH环境的氧化系统中,延迟响应可能会导致诸如氰化物释放、不必要的副反应或管道损坏等问题。为应对这些挑战,我们提出一种“先暂停后调整”的控制策略,利用改良芬顿反应系统中pH响应性产生的羟基自由基(OH)。该系统利用羟胺作为电子供体,并使用乙二胺四乙酸(EDTA)作为铁离子的稳定剂。在7.0至10.0的pH范围内,[Fe-EDTA]和[Fe-OH-EDTA]络合物的共存促进了有效的电子转移,从而导致选择性且持续地产生OH自由基。该策略固有的pH响应性能够实现快速且空间连贯的调整,为满足先进水处理系统中复杂且不断变化的要求提供了一种强大的补充方法。