Suppr超能文献

点模式随机性分析算法。

Algorithm for analyzing randomness in point patterns.

作者信息

Sampaio Tony, Rocha Jorge, Viana Cláudia M, Camboin Silvana, Breunig Fábio Marcelo, Nascimento Edenilson, Frick Elaine de Cacia de Lima

机构信息

Spatial Pattern Analysis and Thematic Cartography Lab, Federal University of Parana, Brazil.

Earth Science Department, Department of Geography, Federal University of Parana, Brazil.

出版信息

MethodsX. 2025 May 8;14:103360. doi: 10.1016/j.mex.2025.103360. eCollection 2025 Jun.

Abstract

Various tests can be used to assess whether the spatial distribution pattern of a set of points is random, dispersed, or clustered. These tests typically compare the expected and observed distances among points, assuming no barriers. However, what is deemed ``random'' in point spatial patterns may be influenced by socio-environmental factors such as wetlands or transportation networks. This tool introduces a sequence of spatial analysis procedure and a statistical testing to evaluate the correlation between observed point patterns and potential spatial determinants (polygons). If a determinant influences the observed point pattern, the classification of the distribution as random must be reconsidered. We implemented this algorithm in Python as a QGIS script with two main steps: the first handles overlay operations and preliminary calculations for the chi-square goodness-of-fit test with and without Bonferroni correction in the second step.•A detailed step-by-step procedure for analyzing randomness in point patterns in a processing toolbox Python script for integration into the open-source software QGIS.•Automated scripts for structuring data, calculating expected and observed values, and applying the chi-square goodness-of-fit test for statistical analysis.•Advanced spatial analysis using chi-square goodness of fit coupled with and without Bonferroni correction, providing deeper insight into the study of the effect of spatial phenomena on the distribution of point events.

摘要

可以使用各种测试来评估一组点的空间分布模式是随机的、分散的还是聚集的。这些测试通常会在假设没有障碍的情况下,比较各点之间的预期距离和观测距离。然而,点空间模式中被视为“随机”的情况可能会受到湿地或交通网络等社会环境因素的影响。该工具引入了一系列空间分析程序和统计测试,以评估观测到的点模式与潜在空间决定因素(多边形)之间的相关性。如果一个决定因素影响了观测到的点模式,那么将分布分类为随机的做法就必须重新考虑。我们用Python将此算法实现为一个QGIS脚本,主要有两个步骤:第一步处理叠加操作以及第二步中有无Bonferroni校正的卡方拟合优度检验的初步计算。

•在一个处理工具箱Python脚本中用于分析点模式随机性的详细分步程序,以便集成到开源软件QGIS中。

•用于构建数据、计算预期值和观测值以及应用卡方拟合优度检验进行统计分析的自动化脚本。

•使用有无Bonferroni校正的卡方拟合优度进行高级空间分析,能更深入地研究空间现象对点事件分布的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39fc/12140936/70a8eff290a3/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验