Barber Casey A, Chien Lung-Chang, Labus Brian, Crank Katherine, Papp Katerina, Gerrity Daniel, Collins Cheryl, Oh Edwin C, Zhang Lei, Mangla Anil T, Lockett Cassius, Chen L-W Antony
School of Public Health, https://ror.org/0406gha72University of Nevada, Las Vegas, Las Vegas, NV, USA.
Applied Research and Development Center, https://ror.org/01h772984Southern Nevada Water Authority, Las Vegas, NV, USA.
Epidemiol Infect. 2025 Jun 9;153:e68. doi: 10.1017/S0950268825100058.
Temporal variability and methodological differences in data normalization, among other factors, complicate effective trend analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wastewater surveillance data and its alignment with coronavirus disease 2019 (COVID-19) clinical outcomes. As there is no consensus approach for these analyses yet, this study explored the use of piecewise linear trend analysis (joinpoint regression) to identify significant trends and trend turning points in SARS-CoV-2 RNA wastewater concentrations (normalized and non-normalized) and corresponding COVID-19 case rates in the greater Las Vegas metropolitan area (Nevada, USA) from mid-2020 to April 2023. The analysis period was stratified into three distinct phases based on temporal changes in testing protocols, vaccination availability, SARS-CoV-2 variant prevalence, and public health interventions. While other statistical methodologies may require fewer parameter specifications, joinpoint regression provided an interpretable framework for characterization and comparison of trends and trend turning points, revealing sewershed-specific variations in trend magnitude and timing that also aligned with known variant-driven waves. Week-level trend agreement corroborated previous findings demonstrating a close relationship between SARS-CoV-2 wastewater surveillance data and COVID-19 outcomes. These findings guide future applications of advanced statistical methodologies and support the continued integration of wastewater-based epidemiology as a complementary approach to traditional COVID-19 surveillance systems.
除其他因素外,数据标准化中的时间变异性和方法差异使严重急性呼吸综合征冠状病毒2(SARS-CoV-2)废水监测数据的有效趋势分析及其与2019冠状病毒病(COVID-19)临床结果的比对变得复杂。由于目前尚无针对这些分析的共识方法,本研究探索了使用分段线性趋势分析(连接点回归)来确定2020年年中至2023年4月美国内华达州大拉斯维加斯都会区SARS-CoV-2 RNA废水浓度(标准化和未标准化)及相应COVID-19病例率中的显著趋势和趋势转折点。根据检测方案、疫苗接种可及性、SARS-CoV-2变异株流行情况和公共卫生干预措施的时间变化,将分析期分为三个不同阶段。虽然其他统计方法可能需要更少的参数设定,但连接点回归为趋势和趋势转折点的表征与比较提供了一个可解释的框架,揭示了流域特定的趋势幅度和时间变化,这些变化也与已知的变异株驱动波相一致。周水平的趋势一致性证实了先前的研究结果,即SARS-CoV-2废水监测数据与COVID-19结果之间存在密切关系。这些发现为先进统计方法的未来应用提供了指导,并支持将基于废水的流行病学作为传统COVID-19监测系统的补充方法持续整合。