Suppr超能文献

代谢和应激反应基因特征揭示了溃疡性结肠炎的异质性,并识别出对治疗反应增强的患者。

Metabolism and response to stress gene signatures reveal ulcerative colitis heterogeneity and identify patients with increased response to therapy.

作者信息

Linggi Bryan, Filice Melissa, Sangiorgi Bruno, Smith Michelle I, Teft Wendy, Jairath Vipul, Ma Christopher, Vande Casteele Niels

机构信息

Alimentiv Inc., London, ON, Canada.

Division of Gastroenterology, Department of Medicine, Western University, London, ON, Canada.

出版信息

J Crohns Colitis. 2025 Jun 4;19(6). doi: 10.1093/ecco-jcc/jjaf092.

Abstract

BACKGROUND AND AIMS

Ulcerative colitis (UC) therapies lead to variable remission and response rates in patients participating in clinical trials, likely due to interindividual target variability, differences in active biological pathways, feedback, and/or resistance mechanisms. Here, we stratified patients into subtypes by characterizing heterogeneity using mucosal biopsy transcriptomics data.

METHODS

Transcriptomics data from an andecaliximab phase 2/3 study in patients with UC were scored for gene signature enrichment. Eleven Reactome gene sets, moderately correlated with histological disease activity using Robarts Histopathology Index with low correlation to each other, were selected and evaluated in baseline gene expression data of ustekinumab, infliximab, and adalimumab clinical trials in patients with UC.

RESULTS

Of 11 gene sets, referred to as "Metabolism and Response to Stress" (MARS) signatures, 5 correlated with "non-disease" mucosa and 6 with "disease-related" mucosa. Clustering baseline andecaliximab samples scored with MARS revealed 3 clusters with low non-disease/high disease-related, high non-disease/low disease-related, or a mixture. Importantly, these clusters did not correlate with patient demographics, clinical characteristics, or disease activity metrics. Clustering baseline data from other clinical trials (anti-interleukin-12/23 and anti-tumor necrosis factor) in patients with UC scored with MARS showed that patients in low non-disease/high disease-related baseline score clusters less likely to achieve treatment response.

CONCLUSIONS

We identified and evaluated a novel, multi-dimensional signature gene set to characterize previously undefined heterogeneity in patients with UC and identify patients less likely to respond to therapy. This approach offers potential utility to define clinical trial populations, enrich for clinical responders, and identify difficult-to-treat populations for therapeutic development.

摘要

背景与目的

溃疡性结肠炎(UC)疗法在参与临床试验的患者中导致不同的缓解率和反应率,这可能是由于个体间靶点变异性、活跃生物学途径差异、反馈和/或抵抗机制所致。在此,我们通过使用黏膜活检转录组学数据表征异质性,将患者分层为不同亚型。

方法

对来自一项在UC患者中进行的安赛蜜单抗2/3期研究的转录组学数据进行基因特征富集评分。选择了11个与使用罗伯茨组织病理学指数的组织学疾病活动中度相关且彼此相关性较低的Reactome基因集,并在UC患者的优特克单抗、英夫利昔单抗和阿达木单抗临床试验的基线基因表达数据中进行评估。

结果

在11个基因集中,即所谓的 “代谢与应激反应”(MARS)特征,5个与 “非疾病” 黏膜相关,6个与 “疾病相关” 黏膜相关。用MARS评分的基线安赛蜜单抗样本聚类显示出3个聚类,分别为低非疾病/高疾病相关、高非疾病/低疾病相关或混合情况。重要的是,这些聚类与患者人口统计学、临床特征或疾病活动指标无关。对UC患者其他临床试验(抗白细胞介素-12/23和抗肿瘤坏死因子)的基线数据用MARS评分进行聚类分析显示,低非疾病/高疾病相关基线评分聚类中的患者实现治疗反应的可能性较小。

结论

我们识别并评估了一个新的、多维度的特征基因集,以表征UC患者中先前未定义的异质性,并识别对治疗反应可能性较小的患者。这种方法为定义临床试验人群、富集临床反应者以及识别治疗开发中难以治疗的人群提供了潜在的实用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验