Lin Jiamin, Zhang Qiang, Xin Yanlin, Lin Kaixin, Zhou Ziao, Yang Xitong, Zhou Yitian, Wang Yuhua, Li Jun, Yang Hao, Xie Zejuan, Lu Wenli, Bi Zhiqiang, Guo Yuanyuan, Zheng Jiuming, Shen Jiajia, Yang Xi, Shen Jianliang, Qi Ruogu
School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
ACS Appl Mater Interfaces. 2025 Jun 18;17(24):35023-35039. doi: 10.1021/acsami.5c02998. Epub 2025 Jun 9.
Circadian rhythm (CR) disruption has been confirmed as a contributing factor to tumor progression. However, regulating circadian genes shows an inhibitory effect on ovarian tumor initiation and progression, which highlights the urgent necessity to regulate tumors' CR to understand their role in ovarian cancer (OC) therapy precisely. Herein, a novel near-infrared (NIR) light-controlled spatiotemporal strategy is presented, aiming to manipulate ovarian tumors' CR while enhancing the efficacy of chemotherapy agents. To achieve this strategy, a versatile nanoplatform (NP) that integrates the modified photothermal sensitizer IR-820 and a norcantharidin-platinum(IV) prodrug conjugate onto a cationic polyethylenimine (PEI) backbone coated with PEG-modified chondroitin sulfate (PEG-CS) for targeted delivery to ovarian tumors is designed. NP effectively diminishes the CR amplitude upon NIR illumination, demonstrating its potential for innovative cancer treatment strategies. Additionally, molecular analyses reveal that this disruption involves calcium-mediated influx, triggered by the photothermal properties of NP. When combined with chemotherapeutic agents, a disrupted clock can elevate tumor sensitivity to these drugs. This process effectively increases DNA-Pt adducts, reduces the activity of protein phosphatase 2A (PP2A), and promotes cell cycle arrest, synergistically amplifying DNA damage and inducing robust tumor apoptosis. The novel nanoparticle synergism offers innovative insights into harnessing CR as a therapeutic target for more effective cancer management.
昼夜节律(CR)紊乱已被确认为肿瘤进展的一个促成因素。然而,调节昼夜节律基因对卵巢肿瘤的起始和进展显示出抑制作用,这凸显了精确调节肿瘤的昼夜节律以了解其在卵巢癌(OC)治疗中的作用的迫切必要性。在此,我们提出了一种新型的近红外(NIR)光控时空策略,旨在操纵卵巢肿瘤的昼夜节律,同时提高化疗药物的疗效。为实现这一策略,设计了一种多功能纳米平台(NP),该平台将修饰的光热敏化剂IR-820和去甲斑蝥素-铂(IV)前药共轭物整合到涂有聚乙二醇修饰硫酸软骨素(PEG-CS)的阳离子聚乙烯亚胺(PEI)主链上,用于靶向递送至卵巢肿瘤。NP在近红外照射下有效地减小了昼夜节律幅度,证明了其在创新癌症治疗策略中的潜力。此外,分子分析表明,这种紊乱涉及由NP的光热特性引发的钙介导内流。当与化疗药物联合使用时,紊乱的生物钟可提高肿瘤对这些药物的敏感性。这一过程有效地增加了DNA-铂加合物,降低了蛋白磷酸酶2A(PP2A)的活性,并促进细胞周期停滞,协同放大DNA损伤并诱导强烈的肿瘤细胞凋亡。这种新型纳米颗粒协同作用为利用昼夜节律作为治疗靶点以实现更有效的癌症管理提供了创新见解。