Kulkarni Sudheendra Rao, Thokchom Bothe, Abbigeri Megha B, Bhavi Santosh Mallikarjun, Singh Sapam Riches, Metri Nitish, Yarajarla Ramesh Babu
Drosophila and Nano Biomedicine Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, 580003, India.
Mol Cell Biochem. 2025 Jun 9. doi: 10.1007/s11010-025-05324-w.
L-DOPA remains a cornerstone treatment for Parkinson's disease and is increasingly recognized for its role in various neurological and neurodegenerative disorders. As a direct precursor to dopamine, L-DOPA is synthesized from L-tyrosine through the action of tyrosine hydroxylase and is subsequently converted into dopamine via aromatic L-amino acid decarboxylase. Its ability to cross the blood-brain barrier (BBB) makes it a crucial therapeutic agent for restoring dopaminergic neurotransmission, thereby influencing motor function, cognition, and neuroprotection. Beyond Parkinson's, L-DOPA's therapeutic potential extends to neurodegenerative conditions such as Alzheimer's disease, Huntington's disease, multiple sclerosis, Lewy body dementia, and amyotrophic lateral sclerosis, where dopamine modulation plays a critical role. Furthermore, L-DOPA has demonstrated efficacy in neurological disorders including epilepsy, peripheral neuropathy, cerebrovascular diseases, and traumatic brain injury, suggesting broader neurobiological applications. However, long-term use is associated with challenges such as motor fluctuations, dyskinesias, and loss of therapeutic efficacy due to progressive neurodegeneration and alterations in dopaminergic pathways. Recent advancements in drug delivery systems, combination therapies, and nanotechnology, including plant-derived carbon dots, offer promising strategies to enhance L-DOPA's effectiveness while mitigating its limitations. This comprehensive review explores L-DOPA's synthesis, pharmacokinetics, mechanism of action, and its evolving role in neurological diseases, while highlighting ongoing challenges and future directions for optimizing its clinical application.
左旋多巴仍然是帕金森病的基石治疗药物,并且其在各种神经和神经退行性疾病中的作用越来越受到认可。作为多巴胺的直接前体,左旋多巴由L-酪氨酸通过酪氨酸羟化酶的作用合成,随后通过芳香族L-氨基酸脱羧酶转化为多巴胺。其穿越血脑屏障(BBB)的能力使其成为恢复多巴胺能神经传递的关键治疗药物,从而影响运动功能、认知和神经保护。除了帕金森病,左旋多巴的治疗潜力还扩展到神经退行性疾病,如阿尔茨海默病(老年痴呆症)、亨廷顿病、多发性硬化症、路易体痴呆症和肌萎缩侧索硬化症,其中多巴胺调节起着关键作用。此外,左旋多巴在包括癫痫、周围神经病变、脑血管疾病和创伤性脑损伤在内的神经系统疾病中已显示出疗效,表明其具有更广泛的神经生物学应用。然而,长期使用会带来一些挑战,如运动波动、异动症以及由于进行性神经退行性变和多巴胺能途径改变导致的治疗效果丧失。药物递送系统、联合疗法和纳米技术(包括植物源碳点)的最新进展提供了有前景的策略,以提高左旋多巴的有效性,同时减轻其局限性。这篇综述探讨了左旋多巴的合成、药代动力学、作用机制及其在神经系统疾病中不断演变的作用,同时强调了优化其临床应用面临的持续挑战和未来方向。