Suppr超能文献

开发一种监测系统,以确定美国退伍军人事务医疗中心患者中驱逐事件的发生率。

Development of a Surveillance System to Identify Incidence of Evictions Among Patients in Veterans Affairs Medical Centers Across the United States.

作者信息

Tsai Jack, Rajan Suja S, Yao Zonghai, Reisman Joel, Liu Weisong, Yu Hong

机构信息

Department of Management, Policy, and Community Health, School of Public Health, University of Texas Health Science Center at Houston, 1200 Pressler St., Houston, 77030, TX, USA.

Department of Veterans Affairs, National Center on Homelessness among Veterans, Washington, DC, USA.

出版信息

J Community Health. 2025 Jun 9. doi: 10.1007/s10900-025-01491-5.

Abstract

Evictions are a major social and public health concern in the United States. The development of Natural Language Processing (NLP) technologies allows for analysis of medical record notes to identify eviction cases in healthcare systems. The current study uses medical records data from the largest integrated healthcare system in the United States to develop a surveillance system to estimate incidence rates of NLP-identified evictions (NIEs) and associated patient characteristics. Data on over 8.5 million unique patients in the Veterans Affairs (VA) healthcare system from March 2018-March 2020 were analyzed and NLP was used to identify incidences of eviction. The 2-year incidence rate for NIEs was 2.38% (95% CI = 2.37-2.39%), with an annualized rate of 1.37% (95% CI = 1.36-1.38%). Logistic regression analyses found greater risk for NIEs among patients who were 45-64 years old, were male, non-Hispanic Black, were unmarried, had a high school education or less, had annual household income equal to or below $45,000, lived in an urban area, lived in a high area deprivation index, lived in the West region of the country, and had a history of military sexual trauma. Patients with a history of homelessness (aOR = 6.45; 95% CI = 6.36-6.54), and diagnoses of drug use disorder (aOR = 2.53; 95% CI = 2.49-2.57) or schizophrenia (aOR = 1.88; 95% CI = 1.83-1.93) were also at greater risk for NIEs. These findings suggest evictions are a rare, but important event among veterans, and may inform homeless prevention efforts by identifying veterans from certain backgrounds at greater risk. This study helps demonstrate the utility of using NLP for a surveillance system to identify evictions and track changes over time.

摘要

在美国,驱逐是一个重大的社会和公共卫生问题。自然语言处理(NLP)技术的发展使得对病历记录进行分析,以识别医疗系统中的驱逐案例成为可能。当前的研究使用了美国最大的综合医疗系统的病历数据,来开发一个监测系统,以估计NLP识别的驱逐(NIEs)发生率及相关患者特征。对2018年3月至2020年3月退伍军人事务部(VA)医疗系统中超过850万独特患者的数据进行了分析,并使用NLP来识别驱逐事件。NIEs的两年发生率为2.38%(95%置信区间=2.37-2.39%),年化率为1.37%(95%置信区间=1.36-1.38%)。逻辑回归分析发现,45-64岁、男性、非西班牙裔黑人、未婚、高中及以下学历、家庭年收入等于或低于45000美元、居住在城市地区、居住在高地区贫困指数地区、居住在美国西部地区且有军事性创伤史的患者发生NIEs的风险更高。有无家可归史(调整后比值比=6.45;95%置信区间=6.36-6.54)、药物使用障碍诊断(调整后比值比=2.53;95%置信区间=2.49-2.57)或精神分裂症(调整后比值比=1.88;95%置信区间=1.83-1.93)的患者发生NIEs的风险也更高。这些发现表明,驱逐在退伍军人中是一个罕见但重要的事件,通过识别某些背景下风险更高的退伍军人,可能为无家可归预防工作提供信息。这项研究有助于证明使用NLP建立监测系统以识别驱逐并跟踪随时间变化的效用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验