Suppr超能文献

自然语言处理增强的健康社会决定因素与美国退伍军人自杀死亡之间的关联。

Associations Between Natural Language Processing-Enriched Social Determinants of Health and Suicide Death Among US Veterans.

机构信息

Manning College of Information and Computer Sciences, University of Massachusetts Amherst.

Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada.

出版信息

JAMA Netw Open. 2023 Mar 1;6(3):e233079. doi: 10.1001/jamanetworkopen.2023.3079.

Abstract

IMPORTANCE

Social determinants of health (SDOHs) are known to be associated with increased risk of suicidal behaviors, but few studies use SDOHs from unstructured electronic health record notes.

OBJECTIVE

To investigate associations between veterans' death by suicide and recent SDOHs, identified using structured and unstructured data.

DESIGN, SETTING, AND PARTICIPANTS: This nested case-control study included veterans who received care under the US Veterans Health Administration from October 1, 2010, to September 30, 2015. A natural language processing (NLP) system was developed to extract SDOHs from unstructured clinical notes. Structured data yielded 6 SDOHs (ie, social or familial problems, employment or financial problems, housing instability, legal problems, violence, and nonspecific psychosocial needs), NLP on unstructured data yielded 8 SDOHs (social isolation, job or financial insecurity, housing instability, legal problems, barriers to care, violence, transition of care, and food insecurity), and combining them yielded 9 SDOHs. Data were analyzed in May 2022.

EXPOSURES

Occurrence of SDOHs over a maximum span of 2 years compared with no occurrence of SDOH.

MAIN OUTCOMES AND MEASURES

Cases of suicide death were matched with 4 controls on birth year, cohort entry date, sex, and duration of follow-up. Suicide was ascertained by National Death Index, and patients were followed up for up to 2 years after cohort entry with a study end date of September 30, 2015. Adjusted odds ratios (aORs) and 95% CIs were estimated using conditional logistic regression.

RESULTS

Of 6 122 785 veterans, 8821 committed suicide during 23 725 382 person-years of follow-up (incidence rate 37.18 per 100 000 person-years). These 8821 veterans were matched with 35 284 control participants. The cohort was mostly male (42 540 [96.45%]) and White (34 930 [79.20%]), with 6227 (14.12%) Black veterans. The mean (SD) age was 58.64 (17.41) years. Across the 5 common SDOHs, NLP-extracted SDOH, on average, retained 49.92% of structured SDOHs and covered 80.03% of all SDOH occurrences. SDOHs, obtained by structured data and/or NLP, were significantly associated with increased risk of suicide. The 3 SDOHs with the largest effect sizes were legal problems (aOR, 2.66; 95% CI, 2.46-2.89), violence (aOR, 2.12; 95% CI, 1.98-2.27), and nonspecific psychosocial needs (aOR, 2.07; 95% CI, 1.92-2.23), when obtained by combining structured data and NLP.

CONCLUSIONS AND RELEVANCE

In this study, NLP-extracted SDOHs, with and without structured SDOHs, were associated with increased risk of suicide among veterans, suggesting the potential utility of NLP in public health studies.

摘要

重要性

社会决定因素健康(SDOH)已知与自杀行为的风险增加有关,但很少有研究使用非结构化电子健康记录中的 SDOH。

目的

使用结构化和非结构化数据调查退伍军人自杀死亡与近期 SDOH 之间的关联。

设计、设置和参与者:这项嵌套病例对照研究包括 2010 年 10 月 1 日至 2015 年 9 月 30 日期间在美国退伍军人健康管理局接受治疗的退伍军人。开发了一种自然语言处理(NLP)系统来从非结构化临床记录中提取 SDOH。结构化数据产生了 6 个 SDOH(即社会或家庭问题、就业或财务问题、住房不稳定、法律问题、暴力和非特定的社会心理需求),NLP 对非结构化数据产生了 8 个 SDOH(社会隔离、工作或财务不安全、住房不稳定、法律问题、护理障碍、暴力、护理过渡和粮食不安全),结合起来产生了 9 个 SDOH。数据于 2022 年 5 月进行分析。

暴露

在最长 2 年的时间内发生 SDOH 与未发生 SDOH 相比。

主要结果和措施

病例组的自杀死亡与出生年份、队列进入日期、性别和随访时间最长的 4 名对照进行匹配。通过国家死亡指数确定自杀,并对队列进入后最长 2 年的患者进行随访,研究结束日期为 2015 年 9 月 30 日。使用条件逻辑回归估计调整后的优势比(aOR)和 95%CI。

结果

在 6122785 名退伍军人中,有 8821 人在 23725382 人年的随访中自杀(发病率为每 100000 人年 37.18 人)。这些 8821 名退伍军人与 35284 名对照参与者相匹配。该队列主要为男性(42540[96.45%])和白人(34930[79.20%]),其中有 6227 名(14.12%)黑人退伍军人。平均(SD)年龄为 58.64(17.41)岁。在 5 个常见的 SDOH 中,NLP 提取的 SDOH 平均保留了结构化 SDOH 的 49.92%,涵盖了所有 SDOH 发生的 80.03%。通过结构化数据和/或 NLP 获得的 SDOH 与自杀风险增加显著相关。效应量最大的 3 个 SDOH 是法律问题(aOR,2.66;95%CI,2.46-2.89)、暴力(aOR,2.12;95%CI,1.98-2.27)和非特定社会心理需求(aOR,2.07;95%CI,1.92-2.23),当结合使用结构化数据和 NLP 时。

结论和相关性

在这项研究中,使用和不使用结构化 SDOH 的 NLP 提取的 SDOH 与退伍军人自杀风险增加相关,这表明 NLP 在公共卫生研究中具有潜在的效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/765e/10018322/6bd199aa6222/jamanetwopen-e233079-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验