Lagerweij V Jelle, Bougueroua Sana, Habibi Parsa, Dey Poulumi, Gaigeot Marie-Pierre, Moultos Othonas A, Vlugt Thijs J H
Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands.
Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, Evry-Courcouronnes 91025, France.
J Phys Chem B. 2025 Jun 19;129(24):6093-6099. doi: 10.1021/acs.jpcb.5c03199. Epub 2025 Jun 9.
Accurate conductivity predictions of KOH(aq) are crucial for electrolysis applications. OH is transferred in water by the Grotthuss transfer mechanism, thereby increasing its mobility compared to that of other ions. Classical and ab initio molecular dynamics struggle to capture this enhanced mobility due to limitations in computational costs or in capturing chemical reactions. Most studies to date have provided only qualitative descriptions of the structure during Grotthuss transfer, without quantitative results for the transfer rate and the resulting transport properties. Here, machine learning molecular dynamics is used to investigate 50,000 transfer events. Analysis confirmed earlier works that Grotthuss transfer requires a reduction in accepted and a slight increase in donated hydrogen bonds to the hydroxide, indicating that hydrogen-bond rearrangements are rate-limiting. The computed self-diffusion coefficients and electrical conductivities are consistent with experiments for a wide temperature range, outperforming classical interatomic force fields and earlier AIMD simulations.
准确预测氢氧化钾水溶液(KOH(aq))的电导率对于电解应用至关重要。氢氧根离子(OH)在水中通过格罗特斯转移机制进行转移,因此与其他离子相比,其迁移率有所提高。由于计算成本的限制或在捕捉化学反应方面的不足,经典分子动力学和从头算分子动力学难以捕捉这种增强的迁移率。迄今为止,大多数研究仅对格罗特斯转移过程中的结构进行了定性描述,而没有给出转移速率和由此产生的传输性质的定量结果。在此,利用机器学习分子动力学研究了50000次转移事件。分析证实了早期的研究成果,即格罗特斯转移需要减少接受的氢键并略微增加给予氢氧根的氢键,这表明氢键重排是限速步骤。计算得到的自扩散系数和电导率在很宽的温度范围内与实验结果一致,优于经典的原子间力场和早期的从头算分子动力学模拟。