Suppr超能文献

通过深度学习混合模型预测价格波动来提高玉米产业的可持续性。

Enhancing corn industry sustainability through deep learning hybrid models for price volatility forecasting.

作者信息

Yang Chengjin, Zhai Yanzhong, Liu Zehua

机构信息

School of Electronic Information Engineering, North China Institute of Science and Technology, Beijing, China.

出版信息

PLoS One. 2025 Jun 9;20(6):e0323714. doi: 10.1371/journal.pone.0323714. eCollection 2025.

Abstract

The fluctuations in corn prices not only increase uncertainty in the market but also affect farmers' planting decisions and income stability, while also impeding crucial investments in sustainable agricultural practices. Collectively, these factors jeopardize the long-term sustainability of the corn sector. In order to address the challenges posed by maize price volatility to the sustainability of the industry, this study proposes a multi-module wavelet transform-based fusion forecasting model: the TLDCF-TSD-BiTCEN-BiLSTM-FECAM (TLDCF-TSD-BBF) model, which is capable of accurately predicting short-term maize price volatility, thereby enhancing the sustainability of the industry. The model integrates a three-layer decomposition combined dual-filter time-series denoising method (TLDCF-TSD), a bidirectional time-convolutional enhancement network (BiTCEN), a bidirectional long- and short-term memory network (BiLSTM), and a frequency-enhanced channel attention mechanism (FECAM) to improve prediction accuracy and robustness. First, TLDCF-TSD is used to decompose the corn price time series into multiple scales, effectively separating the frequency components, extracting the signal details and trend information, and reducing the data complexity and non-stationarity. Secondly, BiTCEN designed in this paper effectively captures the short-term dependencies in the corn price data through the unique bidirectional structure and the special hybrid convolutional structure, and then accurately extracts the local features of the data, while BiLSTM mines the long-term trends and complex dependencies in the data by exploiting its bidirectional processing and long-term memory capabilities. Finally, FECAM enhances the focus on key temporal features in the frequency domain by grouping the input features along the channel dimensions and applying discrete cosine transform to generate attention vectors, improving the prediction accuracy and robustness of the model. The dataset utilized in this study was sourced from the BREC Agricultural Big Data platform, ensuring the reliability and accuracy of the corn price data for our analysis. This study utilizes price data from China's five major corn-producing regions as a case study to demonstrate the efficacy of the proposed model in corn price forecasting. Through extensive experimentation, it has been established that the model significantly outperforms existing baseline models across various evaluation metrics. To be more specific, when dealing with different datasets, its MAE values are 0.0093, 0.0137, 0.0081, 0.0055, and 0.0101 respectively; the MSE values are 0.0002, 0.0002, 0.0001, 0.0001, and 0.0002 respectively; the MAPE values are 1.3630, 1.7456, 1.1905, 0.8456, and 1.7567 respectively; and the R2 values are 0.9891, 0.9888, 0.9943, 0.9955, and 0.9933 respectively. These data fully demonstrate the excellent performance of this model.

摘要

玉米价格的波动不仅增加了市场的不确定性,还影响农民的种植决策和收入稳定性,同时也阻碍了对可持续农业实践的关键投资。这些因素共同危及玉米产业的长期可持续性。为应对玉米价格波动给产业可持续性带来的挑战,本研究提出了一种基于多模块小波变换的融合预测模型:TLDCF - TSD - BiTCEN - BiLSTM - FECAM(TLDCF - TSD - BBF)模型,该模型能够准确预测玉米价格的短期波动,从而增强产业的可持续性。该模型集成了三层分解组合双滤波器时间序列去噪方法(TLDCF - TSD)、双向时间卷积增强网络(BiTCEN)、双向长短时记忆网络(BiLSTM)和频率增强通道注意力机制(FECAM),以提高预测准确性和鲁棒性。首先,TLDCF - TSD用于将玉米价格时间序列分解为多个尺度,有效分离频率成分,提取信号细节和趋势信息,降低数据复杂性和非平稳性。其次,本文设计的BiTCEN通过独特的双向结构和特殊的混合卷积结构有效捕捉玉米价格数据中的短期依赖性,然后准确提取数据的局部特征,而BiLSTM通过利用其双向处理和长期记忆能力挖掘数据中的长期趋势和复杂依赖性。最后,FECAM通过沿通道维度对输入特征进行分组并应用离散余弦变换生成注意力向量,增强对频域中关键时间特征的关注,提高模型的预测准确性和鲁棒性。本研究使用的数据集来自BREC农业大数据平台,确保了我们分析的玉米价格数据的可靠性和准确性。本研究以中国五个主要玉米产区的价格数据为例,证明所提模型在玉米价格预测中的有效性。通过大量实验表明,该模型在各项评估指标上显著优于现有的基线模型。更具体地说,在处理不同数据集时,其MAE值分别为0.0093、0.0137、0.0081、0.0055和0.0101;MSE值分别为0.0002、0.0002、0.0001、0.0001和0.0002;MAPE值分别为1.3630、1.7456,1.1905、0.8456和1.7567;R2值分别为0.9891、0.9888、0.9943、0.9955和0.9933。这些数据充分证明了该模型的优异性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3af/12148151/cc9b6633182e/pone.0323714.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验