Atiea Mohammed A, El-Agha Doaa E
Faculty of Computers and Information, Suez University, P.O. Box: 43221, Suez, Egypt.
Faculty of Engineering, Suez University, Suez, Egypt.
Environ Sci Pollut Res Int. 2025 May;32(25):15321-15341. doi: 10.1007/s11356-025-36582-2. Epub 2025 Jun 9.
Evapotranspiration (ET) has been the focus of research for decades as it is the key to improving water resources management. This study addresses the estimation of daily reference evapotranspiration (ET₀) using machine learning (ML) models with limited meteorological data in newly developed agricultural areas in Egypt. The study tested five methods for selecting key input features to compare the performance of 20 ML models across 14 stations using available daily meteorological data from 1943 to 2024. The modified FAO Penman-Monteith (PM) method was used to estimate ET₀ as a benchmark for evaluating the performance of ML models. The Categorical Boosting (CatBoost) regressor achieved the highest performance across all stations when using the complete feature dataset and maintained high performance with three features. Furthermore, the results showed consistent success of CatBoost, Light Gradient Boosting Machine (LightGBM), and Gradient Boosting Machine (GB) when two features, selected by Sequential Forward Selection (SFS) method, were used. This highlights the feature selection method's ability to capture the most important meteorological variables, making it a valuable tool for improving ET₀ prediction in different agroclimatic regions. In addition, wind speed (U) and maximum temperature (Tmax) were identified as critical predictors of daily ET₀ in Egypt. This approach offers a practical solution for improving water management in newly reclaimed desert areas, not only in Egypt but also in other regions with similar climatic conditions.
几十年来,蒸散量(ET)一直是研究的重点,因为它是改善水资源管理的关键。本研究探讨了在埃及新开发的农业地区,利用机器学习(ML)模型和有限的气象数据来估算日参考蒸散量(ET₀)。该研究测试了五种选择关键输入特征的方法,以使用1943年至2024年的可用日气象数据,比较14个站点上20个ML模型的性能。改良的联合国粮食及农业组织(FAO)彭曼-蒙特斯(PM)方法被用于估算ET₀,作为评估ML模型性能的基准。当使用完整特征数据集时,分类提升(CatBoost)回归器在所有站点上表现最佳,并且在使用三个特征时仍保持高性能。此外,结果表明,当使用通过顺序前向选择(SFS)方法选择的两个特征时,CatBoost、轻量级梯度提升机(LightGBM)和梯度提升机(GB)都取得了一致的成功。这突出了特征选择方法捕捉最重要气象变量的能力,使其成为改善不同农业气候区域ET₀预测的宝贵工具。此外,风速(U)和最高温度(Tmax)被确定为埃及日ET₀的关键预测因子。这种方法为改善新开垦沙漠地区的水资源管理提供了一个切实可行的解决方案,不仅适用于埃及,也适用于其他气候条件相似的地区。