Suppr超能文献

通过原位环状碳酸酯聚合制备可回收锂金属电池电解质

Recyclable Li-Metal Battery Electrolytes via In Situ Cyclic Carbonate Polymerization.

作者信息

Gao Hui, Riesgo-Gonzalez Victor, Runge James R, Yiamsawat Kanyapat, Spencer-Jolly Dominic, McGuire Thomas M, Rees Gregory J, Gao Xiangwen, Hu Bingkun, Zhang Shengming, Wang Longlong, Bruce Peter G, Gregory Georgina L, Williams Charlotte K

机构信息

Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK.

Department of Materials, University of Oxford, Oxford, OX1 3PH, UK.

出版信息

Adv Sci (Weinh). 2025 Aug;12(32):e04206. doi: 10.1002/advs.202504206. Epub 2025 Jun 9.

Abstract

Enabling recycling and improving performance are key challenges for next-generation electrolytes for rechargeable batteries. Here, an equilibrium polymerization: trimethylene carbonate (TMC) ring-opening polymerization, in the presence of lithium difluoro(oxalato)borate salt, is utilized to form an electrolyte in situ during coin cell fabrication for lithium batteries. This process creates a semi-solid poly(trimethylene carbonate) electrolyte with high ambient ionic conductivity (0.52 mS cm), thermal stability (T = 160 °C), and oxidative stability up to 4.7 V. Using this electrolyte with commercial lithium iron phosphate cathodes, results in 97% capacity retention after 350 cycles at 2C, achieving theoretical capacities of 170 mAh g at 0.1C. The cells retain excellent performance at high current densities (86 mAh g at 4C). Post-use, the polymer can be separated from the salt and selectively recycled to pure starting monomer (TMC) through a solid-state chemical recycling process. The recycled monomer, when repolymerized to reform the polycarbonate electrolyte, yields cells with performance identical to the original. The exploitation of polymerization-depolymerization equilibria offers a useful strategy for enhancing battery performance, ensuring effective material recycling, and advancing a circular economy.

摘要

实现可回收利用并提高性能是下一代可充电电池电解质面临的关键挑战。在此,利用一种平衡聚合反应:在二氟(草酸根)硼酸锂盐存在下的碳酸三亚甲酯(TMC)开环聚合反应,在锂电池纽扣电池制造过程中原位形成电解质。该过程产生了一种具有高环境离子电导率(0.52 mS/cm)、热稳定性(T = 160°C)以及高达4.7 V氧化稳定性的半固态聚碳酸三亚甲酯电解质。将这种电解质与商用磷酸铁锂阴极配合使用,在2C下循环350次后容量保持率达到97%,在0.1C时实现了170 mAh/g的理论容量。这些电池在高电流密度下(在4C时为86 mAh/g)保持了优异的性能。使用后,聚合物可与盐分离,并通过固态化学回收过程选择性地回收到纯起始单体(TMC)。回收的单体在重新聚合以重新形成聚碳酸酯电解质时,产生的电池性能与原始电池相同。利用聚合 - 解聚平衡为提高电池性能、确保有效材料回收以及推动循环经济提供了一种有用的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d78b/12407366/857cc0b3bede/ADVS-12-e04206-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验