Sarnow Anne-Christin, Nassar Husam, Alfayomy Abdallah M, Robaa Dina, Sippl Wolfgang
Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt.
Comput Biol Med. 2025 Aug;194:110570. doi: 10.1016/j.compbiomed.2025.110570. Epub 2025 Jun 13.
Proteolysis-targeting chimeras (PROTACs) offer a novel therapeutic strategy for degrading disease-causing proteins, but designing effective degraders remains challenging. PROTACs function by inducing a ternary complex between the target protein and an E3 ligase, requiring structural insights for rational design. Key factors include linker optimization, attachment points, and warhead refinement. Computational approaches, particularly protein-protein docking, are essential for modeling ternary complexes and predicting critical interactions. However, existing docking methods struggle with cereblon (CRBN)-based ternary complexes. To address this, we introduce a computational approach combining HADDOCK protein-protein docking with induced fit PROTAC docking. Validated against 26 crystal structures from the Protein Data Bank (PDB), this method demonstrated high accuracy, especially for CRBN-based complexes. Additionally, molecular dynamics (MD) simulations of CRBN-BRD4-BD1 complexes (PDB IDs 6BN7, 6BOY) provided insights into complex stability through buried surface area and radius of gyration calculations. This validated approach was then applied to five Ataxia telangiectasia and RAD3-related (ATR) kinase PROTACs, enabling modeling in the absence of experimental structures. Our method provides a robust framework for optimizing and designing novel PROTACs targeting diverse proteins.
蛋白酶靶向嵌合体(PROTACs)为降解致病蛋白提供了一种新的治疗策略,但设计有效的降解剂仍然具有挑战性。PROTACs通过诱导靶蛋白与E3连接酶之间形成三元复合物发挥作用,这需要结构上的见解来进行合理设计。关键因素包括连接子优化、连接点和弹头优化。计算方法,特别是蛋白质-蛋白质对接,对于模拟三元复合物和预测关键相互作用至关重要。然而,现有的对接方法在基于脑啡肽(CRBN)的三元复合物方面存在困难。为了解决这个问题,我们引入了一种将HADDOCK蛋白质-蛋白质对接与诱导契合PROTAC对接相结合的计算方法。针对蛋白质数据库(PDB)中的26个晶体结构进行验证,该方法显示出高精度,特别是对于基于CRBN的复合物。此外,通过计算埋藏表面积和回转半径,对CRBN-BRD4-BD1复合物(PDB ID 6BN7、6BOY)进行分子动力学(MD)模拟,深入了解了复合物的稳定性。然后将这种经过验证的方法应用于五种共济失调毛细血管扩张症和RAD3相关(ATR)激酶PROTACs,在没有实验结构的情况下实现了建模。我们的方法为优化和设计针对多种蛋白质的新型PROTACs提供了一个强大的框架。