Jin Gaowei, Campos Joaquín, Liu Yang, de la Cruz Berta Marcó, Zhang Shujing, Liang Mingfu, Li Kaiyue, Xie Xingqiao, Sterky Fredrik H, Acuna Claudio, Wei Zhiyi
Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Southern University of Science and Technology, Shenzhen, China.
Brain Research Center, Southern University of Science and Technology, Shenzhen, China.
PLoS Biol. 2025 Jun 10;23(6):e3002817. doi: 10.1371/journal.pbio.3002817. eCollection 2025 Jun.
Presynaptic scaffold proteins, including liprin-α, RIM, and ELKS, are pivotal to the assembly of the active zone and regulating the coupling of calcium signals and neurotransmitter release, yet the underlying mechanism remains poorly understood. Here, we determined the crystal structure of the liprin-α2/RIM1 complex, revealing a multifaceted intermolecular interaction that drives the liprin-α/RIM assembly. Neurodevelopmental disease-associated mutations block the formation of the complex. Disrupting this interaction in cultured human neurons impairs synaptic transmission and reduces the readily releasable pool of synaptic vesicles. Super-resolution imaging analysis supports a role for liprin-α in recruiting RIM1 to the active zone, presumably by promoting the liquid-liquid phase separation (LLPS) of RIM1. Strikingly, the liprin-α/RIM interaction modulates the competitive distribution of ELKS1 and voltage-gated Ca2+ channels (VGCCs) in RIM1 condensates. Disrupting the liprin-α/RIM interaction significantly decreased VGCC accumulation in the condensed phase and rendered release more sensitive to the slow calcium buffer EGTA, suggesting an increased physical distance between VGCC and vesicular calcium sensors. Together, our findings provide a plausible mechanism of the liprin-α/RIM complex in regulating the coupling of calcium channels and primed synaptic vesicles via LLPS for efficient synaptic transmission and uncover the pathological implication of liprin-α mutations in neurodevelopmental disorders.
包括脂联蛋白-α、RIM和ELKS在内的突触前支架蛋白对于活性区的组装以及调节钙信号与神经递质释放的偶联至关重要,但其潜在机制仍知之甚少。在此,我们确定了脂联蛋白-α2/RIM1复合物的晶体结构,揭示了一种驱动脂联蛋白-α/RIM组装的多方面分子间相互作用。与神经发育疾病相关的突变会阻断该复合物的形成。在培养的人类神经元中破坏这种相互作用会损害突触传递,并减少突触囊泡的易释放池。超分辨率成像分析支持脂联蛋白-α在将RIM1招募到活性区中发挥作用,推测是通过促进RIM1的液-液相分离(LLPS)来实现的。引人注目的是,脂联蛋白-α/RIM相互作用调节了ELKS1和电压门控钙通道(VGCCs)在RIM1凝聚物中的竞争性分布。破坏脂联蛋白-α/RIM相互作用会显著降低VGCC在凝聚相中的积累,并使释放对慢钙缓冲剂EGTA更敏感,这表明VGCC与囊泡钙传感器之间的物理距离增加。总之,我们的研究结果提供了一种脂联蛋白-α/RIM复合物通过LLPS调节钙通道与引发的突触囊泡偶联以实现高效突触传递的合理机制,并揭示了脂联蛋白-α突变在神经发育障碍中的病理意义。