用于质量保证中异常检测的基于自适应共振的可解释单类特征提取

Explainable one-class feature extraction by adaptive resonance for anomaly detection in quality assurance.

作者信息

Kamran Hootan, Aleman Dionne, McIntosh Chris, Purdie Tom

机构信息

Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ONT, Canada.

Department of Medical Biophysics, University of Toronto, Toronto, ONT, Canada.

出版信息

PLoS One. 2025 Jun 10;20(6):e0321968. doi: 10.1371/journal.pone.0321968. eCollection 2025.

Abstract

In this study, we address the inherent challenges in radiotherapy (RT) plan quality assessment (QA). RT, a prevalent cancer treatment, utilizes high-energy beams to target tumors while sparing adjacent healthy tissues. Typically, an RT plan is refined through several QA cycles by experts to ensure it meets clinical and operational objectives before being considered safe for patient treatment. This iterative process tends to eliminate unacceptable plans, creating a significant class imbalance problem for machine learning efforts aimed at automating the classification of RT plans as either acceptable or not. The complexity of RT treatment plans, coupled with the aforementioned class imbalance issue, introduces a generalization problem that significantly hinders the efficacy of traditional binary classification approaches. We introduce a novel one-class classification framework, using an adaptive neural network architecture, that outperforms both traditional binary and standard one-class classification methods in this imbalanced and complex context, despite the inherent disadvantage of not learning from unacceptable plans. Unlike its predecessors, our method enhances anomaly detection for RT plan QA without compromising on interpretability-a critical feature in healthcare applications, where understanding and trust in automated decisions are paramount. By offering clear insights into decision-making processes, our method allows healthcare professionals to quickly identify and address specific deficiencies in RT plans deemed unacceptable, thereby streamlining the QA process and enhancing patient care efficiency and safety.

摘要

在本研究中,我们探讨了放射治疗(RT)计划质量评估(QA)中固有的挑战。放射治疗是一种常见的癌症治疗方法,它利用高能束靶向肿瘤,同时保护相邻的健康组织。通常,放射治疗计划会由专家经过几个质量评估周期进行优化,以确保在被认为对患者治疗安全之前,它能满足临床和操作目标。这个迭代过程往往会淘汰不可接受的计划,这给旨在自动将放射治疗计划分类为可接受或不可接受的机器学习工作带来了严重的类别不平衡问题。放射治疗计划的复杂性,再加上上述类别不平衡问题,带来了一个泛化问题,严重阻碍了传统二元分类方法的有效性。我们引入了一种新颖的单类分类框架,使用自适应神经网络架构,在这种不平衡且复杂的情况下,它优于传统的二元分类方法和标准的单类分类方法,尽管它存在无法从不可接受的计划中学习的固有缺点。与之前的方法不同,我们的方法在不影响可解释性的情况下增强了放射治疗计划质量评估的异常检测——这在医疗保健应用中是一个关键特征,因为对自动化决策的理解和信任至关重要。通过提供对决策过程的清晰洞察,我们的方法使医疗保健专业人员能够快速识别并解决被认为不可接受的放射治疗计划中的特定缺陷,从而简化质量评估过程,提高患者护理效率和安全性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1fb/12151409/fff763100f4a/pone.0321968.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索