Suppr超能文献

深度端到端单类分类器。

Deep End-to-End One-Class Classifier.

作者信息

Sabokrou Mohammad, Fathy Mahmood, Zhao Guoying, Adeli Ehsan

出版信息

IEEE Trans Neural Netw Learn Syst. 2021 Feb;32(2):675-684. doi: 10.1109/TNNLS.2020.2979049. Epub 2021 Feb 4.

Abstract

One-class classification (OCC) poses as an essential component in many machine learning and computer vision applications, including novelty, anomaly, and outlier detection systems. With a known definition for a target or normal set of data, one-class classifiers can determine if any given new sample spans within the distribution of the target class. Solving for this task in a general setting is particularly very challenging, due to the high diversity of samples from the target class and the absence of any supervising signal over the novelty (nontarget) concept, which makes designing end-to-end models unattainable. In this article, we propose an adversarial training approach to detect out-of-distribution samples in an end-to-end trainable deep model. To this end, we jointly train two deep neural networks, R and D . The latter plays as the discriminator while the former, during training, helps D characterize a probability distribution for the target class by creating adversarial examples and, during testing, collaborates with it to detect novelties. Using our OCC, we first test outlier detection on two image data sets, Modified National Institute of Standards and Technology (MNIST) and Caltech-256. Then, several experiments for video anomaly detection are performed on University of Minnesota (UMN) and University of California, San Diego (UCSD) data sets. Our proposed method can successfully learn the target class underlying distribution and outperforms other approaches.

摘要

单类分类(OCC)是许多机器学习和计算机视觉应用中的重要组成部分,包括新奇性、异常和离群值检测系统。对于目标或正常数据集有已知定义的情况下,单类分类器可以确定任何给定的新样本是否在目标类的分布范围内。在一般情况下解决此任务特别具有挑战性,这是因为目标类样本的高度多样性以及在新奇性(非目标)概念上缺乏任何监督信号,这使得设计端到端模型变得无法实现。在本文中,我们提出了一种对抗训练方法,用于在可端到端训练的深度模型中检测分布外样本。为此,我们联合训练两个深度神经网络,R和D。后者充当判别器,而前者在训练期间通过创建对抗性样本来帮助D表征目标类的概率分布,并在测试期间与它协作以检测新奇性。使用我们的OCC,我们首先在两个图像数据集,即修改后的国家标准与技术研究所(MNIST)和加州理工学院256(Caltech-256)上测试离群值检测。然后,在明尼苏达大学(UMN)和加利福尼亚大学圣地亚哥分校(UCSD)数据集上进行了几个视频异常检测实验。我们提出的方法可以成功学习目标类的潜在分布,并且优于其他方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验