文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

地中海贫血早期分类的可解释风险预测模型的开发与验证

Development and validation of an interpretable risk prediction model for the early classification of thalassemia.

作者信息

Lai Jin-Xin, Tang Jia-Wei, Gong Shan-Shan, Qin Ming-Xiong, Zhang Yu-Lu, Liang Quan-Fa, Li Li-Yan, Cai Zhen, Wang Liang

机构信息

Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China.

The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Crawley, WA, Australia.

出版信息

NPJ Digit Med. 2025 Jun 10;8(1):346. doi: 10.1038/s41746-025-01766-0.


DOI:10.1038/s41746-025-01766-0
PMID:40494920
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12152188/
Abstract

Thalassemia is an inherited blood disorder. Current diagnostic methods mainly rely on sophisticated equipment and specifically trained technicians. This study aims to identify and genotype thalassemia by applying machine learning (ML) algorithms to routine blood parameters. This study recruited a derivation cohort of 31,311 individuals from four independent hospitals and developed eight machine learning (ML) models for the purpose. The performance of these models was compared using a set of evaluation metrics. An additional cohort of 2000 patients was recruited for external validation to assess the generalization of the models. The results demonstrated that the categorical boosting (CatBoost) model exhibited the best discriminative ability in both the training and external validation cohorts. The model was then integrated into an online platform, which holds the potential to act as an auxiliary tool for identifying and genotyping thalassemia via automatic analysis of routine blood test parameters.

摘要

地中海贫血是一种遗传性血液疾病。目前的诊断方法主要依赖于精密设备和经过专门培训的技术人员。本研究旨在通过将机器学习(ML)算法应用于常规血液参数来识别地中海贫血并进行基因分型。本研究从四家独立医院招募了一个包含31311名个体的推导队列,并为此开发了八个机器学习(ML)模型。使用一组评估指标对这些模型的性能进行了比较。另外招募了2000名患者组成一个队列进行外部验证,以评估模型的泛化能力。结果表明,分类增强(CatBoost)模型在训练队列和外部验证队列中均表现出最佳的判别能力。然后将该模型集成到一个在线平台中,该平台有潜力通过自动分析常规血液检测参数,作为识别地中海贫血和进行基因分型的辅助工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cf5/12152188/c5f17323c209/41746_2025_1766_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cf5/12152188/411cccad685a/41746_2025_1766_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cf5/12152188/d99c77703b20/41746_2025_1766_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cf5/12152188/ab08f01d91ac/41746_2025_1766_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cf5/12152188/c5f17323c209/41746_2025_1766_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cf5/12152188/411cccad685a/41746_2025_1766_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cf5/12152188/d99c77703b20/41746_2025_1766_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cf5/12152188/ab08f01d91ac/41746_2025_1766_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cf5/12152188/c5f17323c209/41746_2025_1766_Fig4_HTML.jpg

相似文献

[1]
Development and validation of an interpretable risk prediction model for the early classification of thalassemia.

NPJ Digit Med. 2025-6-10

[2]
Development of a 5-Year Risk Prediction Model for Transition From Prediabetes to Diabetes Using Machine Learning: Retrospective Cohort Study.

J Med Internet Res. 2025-5-9

[3]
Explainable Machine Learning Model for Predicting Persistent Sepsis-Associated Acute Kidney Injury: Development and Validation Study.

J Med Internet Res. 2025-4-28

[4]
Establishment and validation of an interactive artificial intelligence platform to predict postoperative ambulatory status for patients with metastatic spinal disease: a multicenter analysis.

Int J Surg. 2024-5-1

[5]
Evaluation of a Machine Learning Model Based on Laboratory Parameters for the Prediction of Influenza A and B in Chongqing, China: Multicenter Model Development and Validation Study.

J Med Internet Res. 2025-5-15

[6]
Interpretable noninvasive diagnosis of tuberculous pleural effusion using LGBM and SHAP: development and clinical application of a machine learning model.

PeerJ. 2025-5-20

[7]
Prediction and validation of pathologic complete response for locally advanced rectal cancer under neoadjuvant chemoradiotherapy based on a novel predictor using interpretable machine learning.

Eur J Surg Oncol. 2024-12

[8]
Highly sensitive detection platform-based diagnosis of oesophageal squamous cell carcinoma in China: a multicentre, case-control, diagnostic study.

Lancet Digit Health. 2024-10

[9]
Development and validation of a prediction model for coronary heart disease risk in depressed patients aged 20 years and older using machine learning algorithms.

Front Cardiovasc Med. 2025-1-9

[10]
An interpretable hybrid machine learning approach for predicting three-month unfavorable outcomes in patients with acute ischemic stroke.

Int J Med Inform. 2025-4

本文引用的文献

[1]
Global, regional, and national burden of thalassemia, 1990-2021: a systematic analysis for the global burden of disease study 2021.

EClinicalMedicine. 2024-5-6

[2]
Invited commentary: Association between Red Blood Cell Distribution width and the all-cause mortality of patients with aortic stenosis: A retrospective study.

Heart Lung. 2024

[3]
Development and validation of an early diagnosis model for bone metastasis in non-small cell lung cancer based on serological characteristics of the bone metastasis mechanism.

EClinicalMedicine. 2024-4-26

[4]
Evaluation of a machine-learning model based on laboratory parameters for the prediction of acute leukaemia subtypes: a multicentre model development and validation study in France.

Lancet Digit Health. 2024-5

[5]
Diagnosis of neurosyphilis in HIV-negative patients with syphilis: development, validation, and clinical utility of a suite of machine learning models.

EClinicalMedicine. 2023-7-19

[6]
Development and validation of an artificial intelligence model for the early classification of the aetiology of meningitis and encephalitis: a retrospective observational study.

EClinicalMedicine. 2023-6-22

[7]
Development and validation of an insulin resistance model for a population without diabetes mellitus and its clinical implication: a prospective cohort study.

EClinicalMedicine. 2023-4-4

[8]
Performance analysis of machine learning algorithms and screening formulae for β-thalassemia trait screening of Indian antenatal women.

Int J Med Inform. 2022-11

[9]
Data-driven clustering approach to identify novel phenotypes using multiple biomarkers in acute ischaemic stroke: A retrospective, multicentre cohort study.

EClinicalMedicine. 2022-9-5

[10]
Thalassaemia.

Lancet. 2022-6-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索