Teng Xiaoyan, Han Kun, Jin Wei, Ma Liru, Wei Lirong, Min Daliu, Chen Libo, Du Yuzhen
Department of Laboratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
EClinicalMedicine. 2024 Apr 26;72:102617. doi: 10.1016/j.eclinm.2024.102617. eCollection 2024 Jun.
Bone metastasis significantly impact the prognosis of non-small cell lung cancer (NSCLC) patients, reducing their quality of life and shortening their survival. Currently, there are no effective tools for the diagnosis and risk assessment of early bone metastasis in NSCLC patients. This study employed machine learning to analyze serum indicators that are closely associated with bone metastasis, aiming to construct a model for the timely detection and prognostic evaluation of bone metastasis in NSCLC patients.
The derivation cohort consisted of 664 individuals with stage IV NSCLC, diagnosed between 2015 and 2018. The variables considered in this study included age, sex, and 18 specific serum indicators that have been linked to the occurrence of bone metastasis in NSCLC. Variable selection used multivariate logistic regression analysis and Lasso regression analysis. Six machine learning methods were utilized to develop a bone metastasis diagnostic model, assessed with Area Under the Curve (AUC), Decision Curve Analysis (DCA), sensitivity, specificity, and validation cohorts. External validation used 113 NSCLC patients from the Medical Alliance (2019-2020). Furthermore, a prospective validation study was conducted on a cohort of 316 patients (2019-2020) who were devoid of bone metastasis, and followed-up for at least two years to assess the predictive capabilities of this model. The model's prognostic value was evaluated using Kaplan-Meier survival curves.
Through variable selection, 11 serum indictors were identified as independent predictive factors for NSCLC bone metastasis. Six machine learning models were developed using age, sex, and these serum indicators. A random forest (RF) model demonstrated strong performance during the training and internal validation cohorts, achieving an AUC of 0.98 (95% CI 0.95-0.99) for internal validation. External validation further confirmed the RF model's effectiveness, yielding an AUC of 0.97 (95% CI 0.94-0.99). The calibration curves demonstrated a high level of concordance between the anticipated risk and the observed risk of the RF model. Prospective validation revealed that the RF model could predict the occurrence of bone metastasis approximately 10.27 ± 3.58 months in advance, according to the results of the SPECT. An online computing platform (https://bonemetastasis.shinyapps.io/shiny_cls_1model/) for this RF model is publicly available and free-to-use by doctors and patients.
This study innovatively employs age, gender, and 11 serological markers closely related to the mechanism of bone metastasis to construct an RF model, providing a reliable tool for the early screening and prognostic assessment of bone metastasis in NSCLC patients. However, as an exploratory study, the findings require further validation through large-scale, multicenter prospective studies.
This work is supported by the National Natural Science Foundation of China (NO.81974315); Shanghai Municipal Science and Technology Commission Medical Innovation Research Project (NO.20Y11903300); Shanghai Municipal Health Commission Health Industry Clinical Research Youth Program (NO.20204Y034).
骨转移显著影响非小细胞肺癌(NSCLC)患者的预后,降低其生活质量并缩短生存期。目前,尚无有效的工具用于NSCLC患者早期骨转移的诊断和风险评估。本研究采用机器学习分析与骨转移密切相关的血清指标,旨在构建一个用于NSCLC患者骨转移的及时检测和预后评估的模型。
推导队列由2015年至2018年期间诊断的664例IV期NSCLC患者组成。本研究考虑的变量包括年龄、性别以及18种与NSCLC骨转移发生相关的特定血清指标。变量选择采用多因素逻辑回归分析和Lasso回归分析。利用六种机器学习方法建立骨转移诊断模型,并通过曲线下面积(AUC)、决策曲线分析(DCA)、敏感性、特异性和验证队列进行评估。外部验证使用了来自医学联盟(2019 - 2020年)的113例NSCLC患者。此外,对316例无骨转移的患者队列(2019 - 2020年)进行了前瞻性验证研究,并随访至少两年以评估该模型的预测能力。使用Kaplan - Meier生存曲线评估该模型的预后价值。
通过变量选择,确定了11种血清指标为NSCLC骨转移的独立预测因素。使用年龄、性别和这些血清指标建立了六个机器学习模型。随机森林(RF)模型在训练和内部验证队列中表现出强大性能,内部验证的AUC为0.98(95%CI 0.95 - 0.99)。外部验证进一步证实了RF模型的有效性,AUC为0.97(95%CI 0.94 - 0.99)。校准曲线显示RF模型的预期风险与观察到的风险之间具有高度一致性。前瞻性验证显示,根据SPECT结果,RF模型可以提前约10.27±3.58个月预测骨转移的发生。该RF模型的在线计算平台(https://bonemetastasis.shinyapps.io/shiny_cls_1model/)已公开,可供医生和患者免费使用。
本研究创新性地利用年龄、性别以及与骨转移机制密切相关的11种血清标志物构建了RF模型,为NSCLC患者骨转移的早期筛查和预后评估提供了可靠工具。然而,作为一项探索性研究,研究结果需要通过大规模、多中心前瞻性研究进一步验证。
本研究得到中国国家自然科学基金(No.81974315);上海市科学技术委员会医学创新研究项目(No.20Y11903300);上海市卫生健康委员会卫生行业临床研究青年项目(No.20204Y034)的支持。