Kalkman Eric D, Qiu Yehao, Hartwig John F
Department of Chemistry, University of California, Berkeley, California 94720, United States.
ACS Catal. 2023 Oct 6;13(19):12810-12825. doi: 10.1021/acscatal.3c02648. Epub 2023 Sep 18.
Palladium-catalyzed fluoroalkylations of aryl halides are valuable reactions for the synthesis of fluorinated, biologically active molecules. Reductive elimination from an intermediate Pd(aryl) (fluoroalkyl) complex is the step that forms the C(aryl)-C(fluoroalkyl) bond, and this step typically requires higher temperatures and proceeds with slower rates than the reductive elimination of nonfluorinated alkylarenes from the analogous Pd(aryl) (alkyl) complexes. The experimental rates of this step correlate poorly with common parameters, such as the steric property or the electron-withdrawing ability of the fluoroalkyl ligand, making the prediction of rates and the rational design of Pd-catalyzed fluoroalkylations difficult. Therefore, a systematic study of the features of fluoroalkyl ligands that affect the barrier to this key step, including steric properties, electron-withdrawing properties, and secondary interactions, is necessary for the future development of fluoroalkylation reactions that occur under milder conditions and that tolerate additional types of fluoroalkyl reagents. We report computational studies of the effect of the fluoroalkyl ligand on the barriers to reductive elimination from complexes ( , , etc.) containing the bidentate ligand di--butyl(2-methoxyphenyl)phosphine (). The computed Gibbs free-energy barriers to reductive elimination from these complexes suggest that fluoroalkylarenes should form quickly at room temperature for the fluoroalkyl ligands we studied, excluding , , , , , , or . Analyses of the transition-state structures by natural bond orbital (NBO) and independent gradient model (IGMH) approaches reveal that orbital interactions between the Pd center and a hydrogen atom or -acid bonded to the -carbon atom of the ligand stabilize the lowest-energy transition states of complexes. Comparisons between conformers of transition-state structures suggest that the magnitude of such stabilizations is 4.7-9.9kcal/mol. In the absence of these secondary orbital interactions, a more electron-withdrawing fluoroalkyl ligand leads to a higher barrier to reductive elimination than a less electron-withdrawing fluoroalkyl ligand. Computations on the reductive elimination from complexes containing -substituted aryl groups on palladium reveal that the barriers to reductive elimination from complexes containing more electron-rich aryl ligands tend to be lower than those to reductive elimination from complexes containing less electron-rich aryl ligands when the fluoroalkyl ligands of these complexes can engage in secondary orbital interactions with the metal center. However, the computed barriers to reductive elimination do not depend on the electronic properties of the aryl ligand when the fluoroalkyl ligands do not engage in secondary orbital interactions with the metal center.
钯催化的芳基卤化物的氟烷基化反应是合成含氟生物活性分子的重要反应。从中间体钯(芳基)(氟烷基)配合物进行的还原消除步骤是形成碳(芳基)-碳(氟烷基)键的步骤,与从类似的钯(芳基)(烷基)配合物中还原消除非氟化烷基芳烃相比,该步骤通常需要更高的温度且反应速率较慢。该步骤的实验速率与常见参数(如氟烷基配体的空间性质或吸电子能力)的相关性较差,这使得预测反应速率以及合理设计钯催化的氟烷基化反应变得困难。因此,系统研究影响这一关键步骤势垒的氟烷基配体的特征,包括空间性质、吸电子性质和二级相互作用,对于未来在更温和条件下发生且能耐受更多类型氟烷基试剂的氟烷基化反应的发展是必要的。我们报道了关于氟烷基配体对含双齿配体二 - 丁基(2 - 甲氧基苯基)膦( )的配合物( 、 等)还原消除势垒影响的计算研究。从这些配合物进行还原消除的计算吉布斯自由能势垒表明,对于我们研究的氟烷基配体(不包括 、 、 、 、 、 或 ),氟烷基芳烃在室温下应能快速形成。通过自然键轨道(NBO)和独立梯度模型(IGMH)方法对过渡态结构的分析表明,钯中心与配体 - 碳原子上键合的氢原子或 - 酸之间的轨道相互作用稳定了配合物的最低能量过渡态。过渡态结构构象之间的比较表明,这种稳定作用的大小为4.7 - 9.9千卡/摩尔。在没有这些二级轨道相互作用的情况下,吸电子性更强的氟烷基配体导致的还原消除势垒比吸电子性较弱的氟烷基配体更高。对含钯上 - 取代芳基的配合物还原消除的计算表明,当这些配合物的氟烷基配体能够与金属中心发生二级轨道相互作用时,含电子云密度更高芳基配体的配合物的还原消除势垒往往低于含电子云密度较低芳基配体的配合物。然而,当氟烷基配体不与金属中心发生二级轨道相互作用时,计算得到的还原消除势垒不依赖于芳基配体的电子性质。