Tapani Tlek, Caligiuri Vincenzo, Zou Yanqiu, Griesi Andrea, Ivanov Yurii P, Cuscunà Massimo, Balestra Gianluca, Lin Haifeng, Sapunova Anastasiia, Franceschini Paolo, Tognazzi Andrea, De Angelis Costantino, Divitini Giorgio, Carzino Riccardo, Kwon Hyunah, Fischer Peer, Krahne Roman, Maccaferri Nicolò, Garoli Denis
Department of Physics, Umeå University, Linnaeus väg 24, 901 87 Umeå, Sweden.
Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
Nanophotonics. 2025 Apr 25;14(12):2151-2160. doi: 10.1515/nanoph-2024-0743. eCollection 2025 Jun.
Dry synthesis is a highly versatile method for the fabrication of nanoporous metal films, since it enables easy and reproducible deposition of single or multi-layers of nanostructured materials that can find intriguing applications in plasmonics, photochemistry and photocatalysis, to name a few. Here, we extend the use of this methodology to the preparation of copper nano-islands that represent an affordable and versatile example of disordered plasmonic substrates. Although the island morphology is disordered, the high density of these nanostructures with large surface area results in a good homogeneity on a macroscale, which is beneficial for plasmonic applications such as bio-sensing and photo-catalysis. With cathodoluminescence and electron-energy-loss spectroscopies we confirm the nano-islands as sources of the local field enhancement and identify the plasmonic resonance bands in the visible and near-infrared spectral range. The decay dynamics of the plasmonic signal are slower in the nano-island as compared to bulk copper films, which can be rationalized by a reduced energy dissipation in the nano-island films. Our study demonstrates a robust and lithography-free fabrication pathway to obtain nanostructured plasmonic copper substrates that represent a highly versatile low-cost alternative for future applications ranging from sensing to photochemistry and photocatalysis.
干合成是一种用于制备纳米多孔金属膜的高度通用的方法,因为它能够轻松且可重复地沉积单层或多层纳米结构材料,这些材料在等离子体学、光化学和光催化等领域有着有趣的应用,仅举几例。在此,我们将这种方法的应用扩展到制备铜纳米岛,铜纳米岛是一种价格合理且通用的无序等离子体基底示例。尽管岛状形态是无序的,但这些具有大表面积的纳米结构的高密度导致在宏观尺度上具有良好的均匀性,这对于诸如生物传感和光催化等等离子体应用是有益的。通过阴极发光和电子能量损失光谱,我们确认纳米岛是局部场增强的来源,并确定了可见光和近红外光谱范围内的等离子体共振带。与块状铜膜相比,纳米岛中等离子体信号的衰减动力学较慢,这可以通过纳米岛膜中能量耗散的减少来解释。我们的研究展示了一种稳健且无需光刻的制造途径,以获得纳米结构的等离子体铜基底,该基底是未来从传感到光化学和光催化等应用的高度通用的低成本替代品。