Suppr超能文献

聚合诱导自组装制备聚离子液体纳米囊泡及其稳定铜纳米颗粒用于定制 CO 电还原

Poly(ionic liquid) nanovesicles via polymerization induced self-assembly and their stabilization of Cu nanoparticles for tailored CO electroreduction.

机构信息

Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany; Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.

Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.

出版信息

J Colloid Interface Sci. 2023 May;637:408-420. doi: 10.1016/j.jcis.2023.01.097. Epub 2023 Jan 21.

Abstract

Herein, we report a straightforward, scalable synthetic route towards poly(ionic liquid) (PIL) homopolymer nanovesicles (NVs) with a tunable particle size of 50 to 120 nm and a shell thickness of 15 to 60 nm via one-step free radical polymerization induced self-assembly. By increasing monomer concentration for polymerization, their nanoscopic morphology can evolve from hollow NVs to dense spheres, and finally to directional worms, in which a multilamellar packing of PIL chains occurred in all samples. The transformation mechanism of NVs' internal morphology is studied in detail by coarse-grained simulations, revealing a correlation between the PIL chain length and the shell thickness of NVs. To explore their potential applications, PIL NVs with varied shell thickness are in situ functionalized with ultra-small (1 ∼ 3 nm in size) copper nanoparticles (CuNPs) and employed as electrocatalysts for CO electroreduction. The composite electrocatalysts exhibit a 2.5-fold enhancement in selectivity towards C products (e.g., CH), compared to the pristine CuNPs. This enhancement is attributed to the strong electronic interactions between the CuNPs and the surface functionalities of PIL NVs. This study casts new aspects on using nanostructured PILs as new electrocatalyst supports in CO conversion to C products.

摘要

本文报道了一种通过自由基聚合诱导自组装一步法制备具有可调粒径(50-120nm)和壳厚(15-60nm)的聚离子液体(PIL)均聚物纳米囊泡(NVs)的简单、可扩展的合成路线。通过增加聚合单体浓度,其纳米形貌可以从空心 NVs 演变为致密球体,最终演变为定向蠕虫,所有样品中均发生了 PIL 链的多层堆积。通过粗粒度模拟详细研究了 NVs 内部形态的转变机制,揭示了 PIL 链长与 NVs 壳厚之间的相关性。为了探索其潜在应用,具有不同壳厚的 PIL NVs 原位功能化有超小(尺寸为 1-3nm)的铜纳米颗粒(CuNPs),并用作 CO 电还原的电催化剂。与原始 CuNPs 相比,复合电催化剂对 C 产物(例如 CH)的选择性提高了 2.5 倍。这种增强归因于 CuNPs 与 PIL NVs 表面官能团之间的强电子相互作用。该研究为使用纳米结构 PIL 作为 CO 转化为 C 产物的新型电催化剂载体提供了新的思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验