Suppr超能文献

通过吸附傅里叶变换红外光谱法探测硫酸化UiO-66和ZrO中的酸性和缺陷位点

Probing Acidic and Defective Sites in Sulfated UiO-66 and ZrO via Adsorptive FTIR Spectroscopy.

作者信息

Butova Vera V, Burachevskaia Olga A, Drenchev Nikola L, Tereshchenko Andrei A, Hadjiivanov Konstantin I

机构信息

Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.

Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia.

出版信息

Nanomaterials (Basel). 2025 May 22;15(11):779. doi: 10.3390/nano15110779.

Abstract

Sulfation is a common strategy to enhance the acidity and modify the adsorption properties of metal-organic frameworks (MOFs), yet its impact on the coordination and accessibility of active sites remains unclear. In this study, we investigate two structurally related systems-sulfated UiO-66 (UiO-66-SO) and sulfated tetragonal zirconia (S-ZrO)-by FTIR spectroscopy with probe molecules. Isotope exchange experiments on S-ZrO reveal that dehydration above 250 °C induces tridentate SO coordination, while hydration leads to a reversible transition to a bidentate coordination mode. In UiO-66-SO, sulfates are coordinated in a bidentate fashion to ZrO clusters, significantly affecting the accessibility of Zr sites in defective pores. This coordination prevents CO adsorption but allows acetonitrile adsorption even after room temperature activation. Unlike S-ZrO, due to its lower thermal stability, UiO-66-SO cannot be evacuated at high temperatures and dehydration at 250 °C does not induce tridentate coordination. The presence of H-bonded hydroxyls in UiO-66-SO after activation at 250 °C supports this coordination model, indicating the formation of OH-coordinated Zr sites that are inaccessible to CO but interact with stronger bases like acetonitrile. Overall, this study provides new insights into the coordination chemistry of sulfated UiO-66 and highlights that sulfation can tune acidity and adsorption in MOFs for potential catalytic and adsorption applications.

摘要

硫酸化是增强金属有机框架(MOF)酸性并改变其吸附性能的常用策略,但其对活性位点的配位和可及性的影响仍不清楚。在本研究中,我们通过使用探针分子的傅里叶变换红外光谱(FTIR)研究了两个结构相关的体系——硫酸化的UiO-66(UiO-66-SO)和硫酸化的四方氧化锆(S-ZrO)。对S-ZrO进行的同位素交换实验表明,250℃以上的脱水诱导三齿SO配位,而水合作用导致向双齿配位模式的可逆转变。在UiO-66-SO中,硫酸盐以双齿方式与ZrO簇配位,显著影响缺陷孔中Zr位点的可及性。这种配位阻止了CO的吸附,但即使在室温活化后仍允许乙腈吸附。与S-ZrO不同,由于其热稳定性较低,UiO-66-SO不能在高温下抽空,250℃的脱水也不会诱导三齿配位。250℃活化后的UiO-66-SO中存在氢键合的羟基支持了这种配位模型,表明形成了OH配位的Zr位点,这些位点对CO不可及,但与乙腈等更强的碱相互作用。总体而言,本研究为硫酸化UiO-66的配位化学提供了新的见解,并强调硫酸化可以调节MOF中的酸度和吸附性能,以用于潜在的催化和吸附应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9abb/12156948/5da7e084ea59/nanomaterials-15-00779-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验