Suppr超能文献

预测脓毒性休克患儿急性肾损伤的危险因素:一项回顾性队列研究。

Risk factors for predicting acute kidney injury in children with septic shock: a retrospective cohort study.

作者信息

Fang Yu, Zheng Weihong, Chen Kepei, Gao Qiqi, Jin Wenwen, Hu Wei, Chen Yu, Lin Zhenlang, Pan Guoquan, Lin Wei

机构信息

Department of Pediatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.

The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.

出版信息

Pediatr Nephrol. 2025 Jun 11. doi: 10.1007/s00467-025-06834-x.

Abstract

BACKGROUND

Acute kidney injury (AKI) is a prevalent and severe complication of septic shock in children, yet data on its risk factors remain scarce. This study aims to identify key predictors for AKI in this population and develop a clinical model for early risk assessment.

METHODS

We conducted a retrospective analysis of clinical data from 180 children diagnosed with septic shock at a large tertiary hospital in China over 10 years. Multivariate analysis was performed to identify independent risk factors for AKI. Based on the results of the multivariate analysis, a clinical predictive nomogram for assessing the risk of sepsis-associated AKI (SA-AKI) in children with septic shock was established and validated using the "rms" package in R 4.3.0 software.

RESULTS

The incidence of AKI in children with septic shock was 44.4%, with significant predictors identified as greater height (95% CI 1.01-1.04), positive random proteinuria (95% CI 1.17-13.09), elevated procalcitonin levels (95% CI 1.00-1.04), base excess (95% CI 0.85-0.99), increased blood urea nitrogen levels (95% CI 1.03-1.22), and prolonged prothrombin time by ≥ 3 s (95% CI 1.13-11.43). Early use of antibiotics (95% CI 0.03-0.77) demonstrated a protective effect. The developed clinical predictive nomogram's ROC curve AUC was 0.895 (95% CI 0.836-0.955), with a sensitivity of 77.1% and specificity of 88.9%. It outperformed individual variables in predicting SA-AKI, and demonstrated good calibration and clinical utility as shown by the calibration and DCA curve. Internal validation by the bootstrap resampling method (1000 times) confirmed the model's accuracy with an AUC of 0.895 (95% CI 0.893-0.896).

CONCLUSIONS

Recognizing these risk factors facilitates timely interventions for pediatric patients with septic shock. The nomogram serves as a valuable tool for clinicians, improving the management of AKI and potentially enhancing patient outcomes.

摘要

背景

急性肾损伤(AKI)是儿童感染性休克常见且严重的并发症,但关于其危险因素的数据仍然匮乏。本研究旨在确定该人群中AKI的关键预测因素,并建立早期风险评估的临床模型。

方法

我们对中国一家大型三级医院10年间诊断为感染性休克的180例儿童的临床资料进行了回顾性分析。进行多变量分析以确定AKI的独立危险因素。基于多变量分析结果,使用R 4.3.0软件中的“rms”包建立并验证了用于评估感染性休克儿童脓毒症相关AKI(SA-AKI)风险的临床预测列线图。

结果

感染性休克儿童中AKI的发生率为44.4%,显著的预测因素包括身高较高(95%CI 1.01 - 1.04)、随机蛋白尿阳性(95%CI 1.17 - 13.09)、降钙素原水平升高(95%CI 1.00 - 1.04)、碱剩余(95%CI 0.85 - 0.99)、血尿素氮水平升高(95%CI 1.03 - 1.22)以及凝血酶原时间延长≥3秒(95%CI 1.13 - 11.43)。早期使用抗生素(95%CI 0.03 - 0.77)显示出保护作用。所建立的临床预测列线图的ROC曲线AUC为0.895(95%CI 0.836 - 0.955),敏感性为77.1%,特异性为88.9%。在预测SA-AKI方面它优于单个变量,并且校准曲线和DCA曲线显示其具有良好的校准度和临床实用性。通过自举重采样方法(1000次)进行的内部验证证实了该模型的准确性,AUC为0.895(95%CI 0.893 - 0.896)。

结论

认识到这些危险因素有助于对感染性休克的儿科患者及时进行干预。该列线图是临床医生的宝贵工具,可改善AKI的管理并可能提高患者预后。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验