Zhang Yang
Foresea Life Insurance Guangzhou General Hospital, Guangzhou City, China.
Lasers Med Sci. 2025 Jun 11;40(1):268. doi: 10.1007/s10103-025-04524-6.
This study aimed to develop and validate a treatment non-adherence risk nomogram for patients receiving intense pulsed light (IPL) therapy, utilizing internal bootstrap validation and external independent set validation.
We analyzed data from 316 patients who received IPL therapy between January and December 2021. The dataset was divided into a training set (n = 213, 67.41%) for model development and a validation set (n = 103, 32.59%). Twenty-two variables spanning demographics, clinical consultations/treatments, and personal habits were evaluated. A multivariable logistic regression model was constructed using predictors selected via Least Absolute Shrinkage and Selection Operator (LASSO) regression. Model performance was assessed by discrimination (C-index), calibration (calibration curves), and clinical utility (decision curve analysis, DCA). Internal validation employed 1,000 bootstrap resamples, followed by external validation.
LASSO regression identified seven predictors: number of jewels, local residents, unrealistic demands, undergone plastic surgery, regular physical exercise, awareness of sun protection, and carbonated/sugary drinks. The nomogram demonstrated strong discrimination (training C-index: 0.922, 95% CI: 0.888-0.956; modified C-index: 0.896) and excellent calibration. External validation confirmed robustness (C-index: 0.897, 95% CI: 0.832-0.962). DCA revealed superior net benefit at threshold probabilities of 1-100% (training) and 1-88% (validation), supporting clinical utility.
This validated nomogram provides a practical tool for individualized prediction of IPL therapy non-adherence risk, facilitating targeted interventions to improve treatment adherence.
本研究旨在开发并验证一种用于接受强脉冲光(IPL)治疗患者的治疗不依从风险列线图,采用内部自举验证和外部独立数据集验证。
我们分析了2021年1月至12月期间接受IPL治疗的316例患者的数据。数据集被分为用于模型开发的训练集(n = 213,67.41%)和验证集(n = 103,32.59%)。评估了涵盖人口统计学、临床会诊/治疗及个人习惯的22个变量。使用通过最小绝对收缩和选择算子(LASSO)回归选择的预测因子构建多变量逻辑回归模型。通过区分度(C指数)、校准(校准曲线)和临床实用性(决策曲线分析,DCA)评估模型性能。内部验证采用1000次自举重采样,随后进行外部验证。
LASSO回归确定了七个预测因子:光斑数量、本地居民、不切实际的要求、接受过整形手术、定期体育锻炼、防晒意识以及碳酸饮料/含糖饮料。列线图显示出较强的区分度(训练C指数:0.922,95% CI:0.888 - 0.956;校正C指数:0.896)和出色的校准。外部验证证实了其稳健性(C指数:0.897,95% CI:0.832 - 0.962)。DCA显示在阈值概率为1 - 100%(训练)和1 - 88%(验证)时具有更高的净效益,支持其临床实用性。
这种经过验证的列线图为个性化预测IPL治疗不依从风险提供了一种实用工具,有助于进行有针对性的干预以提高治疗依从性。