Suppr超能文献

通过多种描述符类别推进口服药物深度学习和机器学习模型的开发:聚焦药代动力学参数(稳态分布容积和血浆蛋白结合率)

Advancing the development of deep learning and machine learning models for oral drugs through diverse descriptor classes: a focus on pharmacokinetic parameters (Vdss and PPB).

作者信息

Bantu Rakesh, Phukan Samiron, Haydar Simon

机构信息

Integrated Drug Discovery, Aragen Lifesciences Ltd, Hyderabad, 500076, India.

出版信息

Mol Divers. 2025 Jun 11. doi: 10.1007/s11030-025-11235-1.

Abstract

In the present study, we report a predictive deep learning (DL) and machine learning (ML) model for pharmacokinetics (PK) parameters such as volume of distribution (Vdss) and plasma protein Binding (PPB). Using DL & ML algorithms our study provides a deeper and novel insights into the role of molecular descriptors in determining the PK parameters such as Vdss and PPB. FDA approved drugs with oral route of administration and having reported PK parameters were taken as the dataset. This was used for establishment of the foundational datasets followed by computation of different molecular descriptor classes. Feature engineering by Boruta algorithm exhibited significant increase in accuracy of the models. Features identified by Boruta algorithm, were trained for different models separately for both Vdss and PPB. The highest predictive scores amongst the models were achieved in gradient boosting (GB) and Stacking Classifier with 80% and 78% for Vdss. In the case of PPB, random forest and GB algorithm predicted the highest scores of 73% and 71%, respectively, in comparison to all other algorithms. In summary we report here appropriate ML algorithms like Stacking Classifier-by utilizing an unreported feature engineering algorithm -to predict Vdss and PPB individually considering over 67 descriptors each with ≥ 80% accuracy and 73% accuracy, respectively. Additionally, we developed models based on the shared descriptors between Vdss and PPB. Quantum chemical descriptors like MLFERs (MLFER_BH, MLFER_BO & MLFER_E) and topological descriptors like piPC5, piPC6, piPC9 & TpiPC identified as the common drivers of the functional activity of Vdss and PPB together.

摘要

在本研究中,我们报告了一种用于预测药代动力学(PK)参数的深度学习(DL)和机器学习(ML)模型,这些参数包括分布容积(Vdss)和血浆蛋白结合率(PPB)。通过使用DL和ML算法,我们的研究对分子描述符在确定Vdss和PPB等PK参数中的作用提供了更深入和新颖的见解。将具有口服给药途径且已报告PK参数的FDA批准药物作为数据集。这用于建立基础数据集,随后计算不同的分子描述符类别。通过Boruta算法进行的特征工程显著提高了模型的准确性。对Boruta算法识别出的特征分别针对Vdss和PPB训练不同的模型。在这些模型中,梯度提升(GB)和堆叠分类器获得了最高的预测分数,Vdss的预测分数分别为80%和78%。对于PPB,与所有其他算法相比,随机森林和GB算法分别预测出最高分数73%和71%。总之,我们在此报告了合适的ML算法,如堆叠分类器——通过利用一种未报告的特征工程算法——分别预测Vdss和PPB,每种算法考虑超过67个描述符,准确率分别≥80%和73%。此外,我们基于Vdss和PPB之间的共享描述符开发了模型。量子化学描述符如MLFERs(MLFER_BH、MLFER_BO和MLFER_E)和拓扑描述符如piPC5、piPC6、piPC9和TpiPC被确定为Vdss和PPB功能活性的共同驱动因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验