Lilly Research Laboratories, Drug Disposition & Toxicology, Lilly Corporate Center, Indianapolis, Indiana 46285, USA.
J Chem Inf Model. 2013 Apr 22;53(4):948-57. doi: 10.1021/ci400001u. Epub 2013 Mar 15.
Reliable prediction of two fundamental human pharmacokinetic (PK) parameters, systemic clearance (CL) and apparent volume of distribution (Vd), determine the size and frequency of drug dosing and are at the heart of drug discovery and development. Traditionally, estimated CL and Vd are derived from preclinical in vitro and in vivo absorption, distribution, metabolism, and excretion (ADME) measurements. In this paper, we report quantitative structure-activity relationship (QSAR) models for prediction of systemic CL and steady-state Vd (Vdss) from intravenous (iv) dosing in humans. These QSAR models avoid uncertainty associated with preclinical-to-clinical extrapolation and require two-dimensional structure drawing as the sole input. The clean, uniform training sets for these models were derived from the compilation published by Obach et al. (Drug Metab. Disp. 2008, 36, 1385-1405). Models for CL and Vdss were developed using both a support vector regression (SVR) method and a multiple linear regression (MLR) method. The SVR models employ a minimum of 2048-bit fingerprints developed in-house as structure quantifiers. The MLR models, on the other hand, are based on information-rich electro-topological states of two-atom fragments as descriptors and afford reverse QSAR (RQSAR) analysis to help model-guided, in silico modulation of structures for desired CL and Vdss. The capability of the models to predict iv CL and Vdss with acceptable accuracy was established by randomly splitting data into training and test sets. On average, for both CL and Vdss, 75% of test compounds were predicted within 2.5-fold of the value observed and 90% of test compounds were within 5.0-fold of the value observed. The performance of the final models developed from 525 compounds for CL and 569 compounds for Vdss was evaluated on an external set of 56 compounds. The predictions were either better or comparable to those predicted by other in silico models reported in the literature. To demonstrate the practical application of the RQSAR approach, the structure of vildagliptin, a high-CL and a high-Vdss compound, is modified based on the atomic contributions to its predicted CL and Vdss to propose compounds with lower CL and lower Vdss.
可靠地预测两个基本的人体药代动力学 (PK) 参数,即全身清除率 (CL) 和表观分布容积 (Vd),决定了药物的剂量大小和频率,是药物发现和开发的核心。传统上,估计的 CL 和 Vd 是从临床前的体外和体内吸收、分布、代谢和排泄 (ADME) 测量中得出的。在本文中,我们报告了用于预测人体静脉内 (iv) 给药时的全身 CL 和稳态 Vd (Vdss) 的定量构效关系 (QSAR) 模型。这些 QSAR 模型避免了临床前到临床外推的不确定性,并且仅需要二维结构绘图作为唯一输入。这些模型的清洁、统一的训练集源自 Obach 等人发表的汇编(Drug Metab. Disp. 2008, 36, 1385-1405)。CL 和 Vdss 模型使用支持向量回归 (SVR) 方法和多元线性回归 (MLR) 方法进行开发。SVR 模型采用了我们内部开发的最小 2048 位指纹作为结构量化器。另一方面,MLR 模型基于两个原子片段的信息丰富的电拓扑状态作为描述符,并提供反向定量构效关系 (RQSAR) 分析,以帮助基于模型的、计算指导的结构调制,以获得所需的 CL 和 Vdss。通过将数据随机拆分为训练集和测试集,建立了模型以可接受的精度预测 iv CL 和 Vdss 的能力。平均而言,对于 CL 和 Vdss,75%的测试化合物的预测值在观察值的 2.5 倍以内,90%的测试化合物的预测值在观察值的 5.0 倍以内。从 525 种用于 CL 的化合物和 569 种用于 Vdss 的化合物中开发的最终模型的性能在 56 种化合物的外部集上进行了评估。预测结果要么优于,要么与文献中报道的其他计算模型的预测结果相当。为了展示 RQSAR 方法的实际应用,根据其预测的 CL 和 Vdss 的原子贡献来修改维格列汀的结构,维格列汀是一种高 CL 和高 Vdss 的化合物,以提出 CL 和 Vdss 较低的化合物。