Suppr超能文献

用于预测心房颤动中风的可解释独立循环网络

Interpretable Independent Recurrent Networks for Forecasting Stroke in Atrial Fibrillation.

作者信息

Hsu Jung-Chi, Hsieh Yi-Hsien, Yang Yen-Yun, Chuang Shu-Lin, Lin Che, Lin Lian-Yu

机构信息

Department of Internal Medicine, National Taiwan University Hospital Jinshan Branch, New Taipei City, Taiwan; Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.

Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan.

出版信息

JACC Asia. 2025 Aug;5(8):966-978. doi: 10.1016/j.jacasi.2025.04.003. Epub 2025 Jun 10.

Abstract

BACKGROUND

Atrial fibrillation (AF) is a major risk factor for transient ischemic attack (TIA)/ischemic stroke (IS).

OBJECTIVES

Given the dynamic nature of IS risk, this study aimed to predict IS risk in AF patients using a high-dimensional time-series model.

METHODS

We conducted a cohort study at the National Taiwan University Hospital from 2014 to 2019, including 7,710 AF patients, with external validation in 6,822 patients from the National Taiwan University Hospital Yunlin Branch. The Forecasting Strokes via Interpretable Independent Networks (ForeSIIN) model, based on gated recurrent units, was proposed. Kaplan-Meier analysis with log-rank test evaluated risk group differences.

RESULTS

The annual TIA/IS incidence rate ranged from 181.96 (95% CI: 164.42-200.93) to 15.81 (95% CI: 12.38-20.18) per 1,000 person-years, with an overall incidence of 42.40 (95% CI: 39.60-45.39). The ForeSIIN model achieved the best prediction with an area under the receiver-operating characteristics curve of 0.764 (95% CI: 0.722-0.810), compared with the CHADS-VASc score (AUC: 0.650; 95% CI: 0.596-0.699) and other nonsequential models: extreme gradient boosting AUC: 0.722 (95% CI: 0.676-0.769), support vector machine AUC 0.691 (95% CI: 0.637-0.741), random forest AUC: 0.689 (95% CI: 0.637-0.742). External validation showed area under the receiver-operating characteristics curve of 0.646 (95% CI: 0.618-0.671) and area under the precision-recall curve of 0.222 (95% CI: 0.184-0.259). Feature impact analysis identified the top 5 factors: history of TIA/IS, estimated glomerular filtration rate, C-reactive protein, hematocrit, and plasma fasting glucose. Kaplan-Meier analysis showed significant risk differences between ForeSIIN groups (log-rank P < 0.001).

CONCLUSIONS

The innovative ForeSIIN model demonstrated accurate stroke prediction in AF patients and enhanced the interpretation of dynamic risk factors over time.

摘要

背景

心房颤动(AF)是短暂性脑缺血发作(TIA)/缺血性卒中(IS)的主要危险因素。

目的

鉴于IS风险的动态性质,本研究旨在使用高维时间序列模型预测AF患者的IS风险。

方法

我们于2014年至2019年在台湾大学医院进行了一项队列研究,纳入7710例AF患者,并在台湾大学医院云林分院的6822例患者中进行了外部验证。提出了基于门控循环单元的通过可解释独立网络预测卒中(ForeSIIN)模型。采用对数秩检验的Kaplan-Meier分析评估风险组差异。

结果

每1000人年的年度TIA/IS发病率范围为181.96(95%CI:164.42 - 200.93)至15.81(95%CI:12.38 - 20.18),总体发病率为42.40(95%CI:39.60 - 45.39)。与CHADS-VASc评分(AUC:0.650;95%CI:0.596 - 0.699)和其他非序列模型相比,ForeSIIN模型在受试者工作特征曲线下面积为0.764(95%CI:0.722 - 0.810)时实现了最佳预测:极端梯度提升AUC:0.722(95%CI:0.676 - 0.769),支持向量机AUC 0.691(95%CI:0.637 - 0.741),随机森林AUC:0.689(95%CI:0.637 - 0.742)。外部验证显示受试者工作特征曲线下面积为0.646(95%CI:0.618 - 0.671),精确召回率曲线下面积为0.222(95%CI:0.184 - 0.259)。特征影响分析确定了前5个因素:TIA/IS病史、估计肾小球滤过率、C反应蛋白、血细胞比容和血浆空腹血糖。Kaplan-Meier分析显示ForeSIIN组之间存在显著风险差异(对数秩P < 0.001)。

结论

创新的ForeSIIN模型在AF患者中显示出准确的卒中预测能力,并增强了对随时间变化的动态危险因素的解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/449f/12426851/ad8e41b7df33/ga1.jpg

相似文献

1
Interpretable Independent Recurrent Networks for Forecasting Stroke in Atrial Fibrillation.
JACC Asia. 2025 Aug;5(8):966-978. doi: 10.1016/j.jacasi.2025.04.003. Epub 2025 Jun 10.
5
Refining Prediction of Atrial Fibrillation-Related Stroke Using the P-CHADS-VASc Score.
Circulation. 2019 Jan 8;139(2):180-191. doi: 10.1161/CIRCULATIONAHA.118.035411.
7
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.
9
Factor Xa inhibitors versus vitamin K antagonists for preventing cerebral or systemic embolism in patients with atrial fibrillation.
Cochrane Database Syst Rev. 2013 Aug 8(8):CD008980. doi: 10.1002/14651858.CD008980.pub2.

引用本文的文献

1
How Far Can Time-Series Models Go in Capturing Dynamic Stroke Risk Post Atrial Fibrillation?
JACC Asia. 2025 Aug;5(8):979-982. doi: 10.1016/j.jacasi.2025.05.004.

本文引用的文献

4
Predicting short-term outcomes in atrial-fibrillation-related stroke using machine learning.
Front Neurol. 2023 Nov 8;14:1243700. doi: 10.3389/fneur.2023.1243700. eCollection 2023.
5
Differential Diagnostic Value of Machine Learning-Based Models for Embolic Stroke.
Clin Appl Thromb Hemost. 2023 Jan-Dec;29:10760296231203663. doi: 10.1177/10760296231203663.
8
Enhancing the detection of atrial fibrillation from wearable sensors with neural style transfer and convolutional recurrent networks.
Comput Biol Med. 2022 Jul;146:105551. doi: 10.1016/j.compbiomed.2022.105551. Epub 2022 Apr 28.
9
Predicting Ischemic Stroke in Patients with Atrial Fibrillation Using Machine Learning.
Front Biosci (Landmark Ed). 2022 Mar 4;27(3):80. doi: 10.31083/j.fbl2703080.
10
Role of New Potential Biomarkers in the Risk of Thromboembolism in Atrial Fibrillation.
J Clin Med. 2022 Feb 9;11(4):915. doi: 10.3390/jcm11040915.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验