Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
Waikato Clinical School, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
Comput Biol Med. 2022 Jul;146:105551. doi: 10.1016/j.compbiomed.2022.105551. Epub 2022 Apr 28.
Electrocardiograms (ECG) provide an effective, non-invasive approach for clinical diagnosis and monitoring treatment in patients with cardiac diseases including the most common cardiac arrhythmia, atrial fibrillation (AF). Portable ECG recording devices including Apple Watch and Kardia devices have been developed for AF detection. However, the efficacy of these smart devices has not been fully validated. We aimed to develop an open-source deep learning framework for automatic AF detection using the largest publicly available single-lead ECG dataset through a mobile Kardia device enhanced with style transfer-driven data augmentation. We developed and validated a 37-layer convolutional recurrent network (CRN) using 5,834 single-lead ECGs with a mean length of 30 seconds from the 2017 PhysioNet Challenge to automatically detect sinus rhythm and AF. To address the challenge of a lack of a large number of AF samples, we proposed a novel style transfer generator that fuses patient-specific clinical ECGs and mathematically modelled ECG features to synthesize realistic ECGs by five-fold. The differences between synthesized and clinical ECGs were analyzed by studying their average ECG morphologies and frequency distributions. Our results indicated the style transfer-driven data augmentation was not classifier-dependent. Validation on 2,917 clinical ECGs showed an F score of 96.4%, with the generated ECGs contributing to a 3% improvement in AF detection for the Kardia event recorder. By developing and evaluating our approach on an open-source ECG dataset, we have demonstrated that our framework is both robust and verifiable, and potentially can be used in portable devices for effective AF classification.
心电图(ECG)提供了一种有效的、非侵入性的方法,可用于心脏病患者的临床诊断和治疗监测,包括最常见的心律失常心房颤动(AF)。已经开发出了包括 Apple Watch 和 Kardia 设备在内的便携式心电图记录设备,用于检测 AF。然而,这些智能设备的疗效尚未得到充分验证。我们旨在通过使用经过风格迁移驱动的数据增强的移动 Kardia 设备,从最大的公开可用单导联 ECG 数据集开发一个开源深度学习框架,用于自动检测 AF。我们使用 2017 年 PhysioNet 挑战赛中的 5834 个单导联 ECG(平均长度为 30 秒)开发并验证了一个 37 层卷积循环网络(CRN),用于自动检测窦性节律和 AF。为了解决 AF 样本数量不足的挑战,我们提出了一种新颖的风格迁移生成器,该生成器融合了患者特定的临床 ECG 和数学建模的 ECG 特征,通过五倍折叠来合成真实的 ECG。通过研究合成 ECG 和临床 ECG 的平均 ECG 形态和频率分布来分析它们之间的差异。我们的结果表明,风格迁移驱动的数据增强与分类器无关。在 2917 个临床 ECG 上进行的验证表明,F 分数为 96.4%,Kardia 事件记录器生成的 ECG 有助于提高 AF 检测的 3%。通过在开源 ECG 数据集上开发和评估我们的方法,我们证明了我们的框架既稳健又可验证,并且可能可用于便携式设备中进行有效的 AF 分类。