海洋世界内部柠檬酸循环及相关反应的热力学限制
Thermodynamic Constraints on the Citric Acid Cycle and Related Reactions in Ocean World Interiors.
作者信息
Işık Seda, Melwani Daswani Mohit, Işık Emre, Weber Jessica M, Olgun Kıyak Nazlı
机构信息
Eurasia Institute of Earth Sciences, Istanbul Technical University, 34485 Istanbul, Turkey.
Kandilli Observatory and Earthquake Research Institute, Bogazici University, 34684 Istanbul, Turkey.
出版信息
ACS Earth Space Chem. 2025 May 22;9(6):1392-1412. doi: 10.1021/acsearthspacechem.4c00371. eCollection 2025 Jun 19.
Icy ocean worlds in our solar system have attracted significant interest for their astrobiological and biogeochemical potential due to the predicted presence of global subsurface liquid water oceans, the presence of organics in Enceladus and Titan, and plausible sources of chemical energy available for life therein. A difficulty in placing quantitative constraints on the occurrence and effectiveness of biogeochemical reactions favorable for life and metabolism in ocean worlds is the paucity of thermodynamic data for the relevant reactions for pressure, temperature and compositional conditions pertaining to ocean worlds, in addition to uncertainties in the estimation of such conditions. Here, we quantify the thermodynamic viability and energetics of various reactions of interest to metabolism at pressures and temperatures relevant to ocean worlds Enceladus, Europa, Titan and Ganymede, and conditions relevant to the Lost City Hydrothermal Field for comparison. Specifically, we examine the tricarboxylic acid cycle (also known as TCA, Krebs cycle, or citric acid cycle) and a plausible precursor prebiotic network of reactions leading to the TCA cycle. We use DEWPython, a program based on the deep earth water (DEW) model (which is a high pressure and high temperature extension of the HelgesonKirkhamFlowers equation of state used to calculate thermodynamic properties of ions and complexes in aqueous solutions), to compute the equilibrium constants and the Gibbs free energy changes for given reactions, as a function of pressure and temperature. Using instantaneous concentrations of inorganics and organics from terrestrial microbial experiments and those derived from the Cassini mission for Enceladus, we calculate chemical affinities of reactions in the network. We carry out similar calculations using the SUPCRT model for lower pressures and temperatures. Together, the two models span temperatures between 0 and 1200 °C and pressures between 1 bar and 60 kbar. We found that across the majority of oceanic pressuretemperature profiles, certain TCA cycle species, such as citrate and succinate, accumulate, while others, including fumarate and oxaloacetate, exhibit a diminishing trend. This observation suggests that the internal conditions of ocean worlds may not thermodynamically favor a unidirectional TCA cycle, thereby implying an additional source of energy (e.g., metabolites) to overcome energy bottlenecks. Notably, we find similar bottlenecks at the Lost City Hydrothermal Field, which is undoubtedly inhabited by organisms. In the prebiotic network, we found that pyruvate and acetate exhibit remarkable stability and accumulate in substantial quantities, thereby feeding the TCA cycle through the production of citrate. In this case the oxaloacetate bottleneck within the TCA cycle is bypassed via the prebiotic pathway. We also found that the formation of all TCA cycle species from inorganic compounds (CO + H) is highly favored throughout the geotherms of ocean worlds. Although based on largely uncertain concentrations of chemical species in ocean worlds, our nonequilibrium thermodynamic predictions are rather insensitive to changes in the activities, and may aid in the interpretation of data gathered by future missions, as compositional data will become available. Specifically, spacecraft measurements of TCA cycle species in aqueous environments that align with or deviate strongly from our estimations would have a critical impact on the search for life in ocean worlds.
我们太阳系中的冰冷海洋世界因其全球地下液态水海洋的预测存在、土卫二和泰坦上有机物的存在以及其中可供生命利用的合理化学能源来源,而在天体生物学和生物地球化学潜力方面引起了极大关注。除了在估算这些条件时存在不确定性之外,难以对有利于海洋世界中生命和新陈代谢的生物地球化学反应的发生和有效性进行定量限制的一个困难在于,缺乏与海洋世界相关的压力、温度和成分条件下相关反应的热力学数据。在这里,我们量化了在与海洋世界土卫二、木卫二、泰坦和木卫三相关的压力和温度以及与失落之城热液场相关的条件下,各种对新陈代谢有意义的反应的热力学可行性和能量学,以便进行比较。具体而言,我们研究了三羧酸循环(也称为TCA循环、克雷布斯循环或柠檬酸循环)以及一个导致TCA循环的合理的前体益生元反应网络。我们使用DEWPython,一个基于深部地球水(DEW)模型的程序(该模型是用于计算水溶液中离子和络合物热力学性质的Helgeson-Kirkham-Flowers状态方程的高温高压扩展),来计算给定反应的平衡常数和吉布斯自由能变化,作为压力和温度的函数。利用来自陆地微生物实验的无机和有机物质的瞬时浓度以及从卡西尼号任务获取的土卫二的相关数据,我们计算了网络中反应的化学亲和力。我们使用SUPCRT模型对较低压力和温度进行了类似的计算。这两个模型一起涵盖了0至1200℃的温度范围和1巴至60千巴的压力范围。我们发现,在大多数海洋压力-温度剖面中,某些TCA循环物种,如柠檬酸盐和琥珀酸盐会积累,而其他物种,包括富马酸盐和草酰乙酸盐,则呈现减少趋势。这一观察结果表明,海洋世界的内部条件在热力学上可能不有利于单向TCA循环,从而意味着需要额外的能量来源(例如代谢物)来克服能量瓶颈。值得注意的是,我们在无疑有生物栖息的失落之城热液场发现了类似的瓶颈。在益生元网络中,我们发现丙酮酸和乙酸盐表现出显著的稳定性并大量积累,从而通过柠檬酸盐的产生为TCA循环提供物质。在这种情况下,TCA循环中的草酰乙酸盐瓶颈通过益生元途径被绕过。我们还发现,在海洋世界的整个地热范围内,由无机化合物(CO + H)形成所有TCA循环物种的过程都非常有利。尽管基于海洋世界中化学物种的浓度在很大程度上不确定,但我们的非平衡热力学预测对活性变化相当不敏感,并且可能有助于解释未来任务收集的数据,因为届时将可获得成分数据。具体而言,航天器在水环境中对TCA循环物种的测量结果与我们的估计相符或有很大偏差,将对在海洋世界中寻找生命产生关键影响。
相似文献
ACS Earth Space Chem. 2025-5-22
Cochrane Database Syst Rev. 2021-4-19
Cochrane Database Syst Rev. 2017-12-22
Cochrane Database Syst Rev. 2022-5-20
Cochrane Database Syst Rev. 2020-10-19
Appl Environ Microbiol. 2025-6-18
Health Technol Assess. 2006-9
Cochrane Database Syst Rev. 2008-7-16
本文引用的文献
Astrobiology. 2024-2
Nat Comput Sci. 2023-1
Science. 2023-9-22
Life (Basel). 2023-3-8
Angew Chem Int Ed Engl. 2022-12-19