Unzueta Saavedra Jimena, Deaso Emma A, Austin Margot, Cadavid Laura, Kraff Rachel, Knowles Emma E M
Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02445, United States, 1 6179194628.
Harvard Medical School, 25 Shattuck Street, Boston, MA, United States.
JMIR Form Res. 2025 Jun 11;9:e66187. doi: 10.2196/66187.
BACKGROUND: Adolescent depression is a significant public health concern. The presentation of depressive symptoms varies widely among individuals, fluctuating in intensity over time. Ecological momentary assessment (EMA) offers a unique advantage by enhancing ecological validity and reducing recall bias, allowing for a more accurate and nuanced understanding of major depressive disorder (MDD) symptoms. This methodology provides valuable insights into the fluctuating nature of depression, which could inform more personalized and timely interventions. OBJECTIVE: This study aims to (1) evaluate the feasibility of collecting smartphone-based EMA data alongside activity and sleep tracking in adolescents with depression; (2) investigate the severity and variability of mood symptoms reported over time; and (3) explore the relationship between mood, activity, and sleep. METHODS: Thirty-six participants (23 with MDD, 13 unaffected controls; 75% [n=27] female, mean age 19.50 y) completed twice-daily EMA check-ins over 2 weeks, complemented by continuous activity and sleep monitoring using FitBit Charge 3 devices. The study examined feasibility, usability of the EMA app, symptom severity and variability, and relationships between mood, activity, and sleep. We applied linear mixed-effects regression to the data to examine relationships between variables. RESULTS: Participants completed a total of 923 unique check-ins (mean check-ins per participant=25.60). Overall compliance rates were high (91.57%), indicating the approach is highly feasible. MDD participants demonstrated greater symptom severity and variability over time compared with controls (β=34.48, P<.001). Individuals with MDD exhibited greater diurnal variation (β=-2.54, P<.001) with worse mood in the morning and worse mood than anxiety scores over time (β=-6.93, P<.001). Life stress was a significant predictor of more severe EMA scores (β=24.50, P<.001). MDD cases exhibited more inconsistent sleep patterns (β=32.14, P<.001), shorter total sleep times (β=-94.38, P<.001), and a higher frequency of naps (β=14.05, P<.001). MDD cases took fewer steps per day (mean 5828.64, SD 6188.85) than controls (mean 7088.47, SD 5378.18) over the course of the study, but this difference was not significant (P=.33), and activity levels were not significantly predictive of EMA score (P=.75). CONCLUSIONS: This study demonstrates the feasibility of integrating smartphone-based EMA with wearable activity tracking in adolescents with depression. High compliance rates support the practicality of this approach, while EMA data provide valuable insights into the dynamic nature of depressive symptoms, particularly in relation to sleep and life stress. Future studies should validate these findings in larger, more diverse samples. Clinically, EMA and wearable tracking may enhance routine assessments and inform personalized interventions by capturing symptom variability and external influences in real time.
背景:青少年抑郁症是一个重大的公共卫生问题。抑郁症状在个体间表现差异很大,且强度随时间波动。生态瞬时评估(EMA)通过提高生态效度和减少回忆偏差提供了独特优势,有助于更准确、细致地理解重度抑郁症(MDD)症状。这种方法为抑郁症的波动本质提供了有价值的见解,可为更个性化、及时的干预提供依据。 目的:本研究旨在(1)评估在患有抑郁症的青少年中,收集基于智能手机的EMA数据并结合活动和睡眠追踪的可行性;(2)调查随时间报告的情绪症状的严重程度和变异性;(3)探索情绪、活动和睡眠之间的关系。 方法:36名参与者(23名患有MDD,13名未受影响的对照者;75%[n = 27]为女性,平均年龄19.50岁)在2周内每天进行两次EMA签到,同时使用FitBit Charge 3设备进行持续的活动和睡眠监测。该研究考察了可行性、EMA应用程序的可用性、症状严重程度和变异性,以及情绪、活动和睡眠之间的关系。我们对数据应用线性混合效应回归来检验变量之间的关系。 结果:参与者共完成了923次独特的签到(每位参与者平均签到25.60次)。总体依从率很高(91.57%),表明该方法非常可行。与对照组相比,MDD参与者随时间表现出更大的症状严重程度和变异性(β = 34.48,P <.001)。MDD个体表现出更大的昼夜变化(β = -2.54,P <.001),早晨情绪更差,且随时间情绪比焦虑得分更差(β = -6.93,P <.001)。生活压力是EMA得分更高的一个重要预测因素(β = 24.50,P <.001)。MDD患者表现出更不一致的睡眠模式(β = 32.14,P <.001)、总睡眠时间更短(β = -94.38,P <.001)以及午睡频率更高(β = 14.05,P <.001)。在研究过程中,MDD患者每天的步数(平均5828.64步,标准差6188.85步)比对照组(平均7088.47步,标准差5378.18步)少,但这种差异不显著(P =.33),且活动水平对EMA得分没有显著预测作用(P =.75)。 结论:本研究证明了在患有抑郁症的青少年中将基于智能手机的EMA与可穿戴活动追踪相结合的可行性。高依从率支持了这种方法的实用性,而EMA数据为抑郁症状的动态本质提供了有价值的见解,特别是与睡眠和生活压力相关的方面。未来的研究应在更大、更多样化的样本中验证这些发现。临床上,EMA和可穿戴追踪可能通过实时捕捉症状变异性和外部影响来加强常规评估并为个性化干预提供依据。
Cochrane Database Syst Rev. 2022-6-15
Front Psychol. 2022-12-15
Nat Rev Psychol. 2022
J Am Acad Child Adolesc Psychiatry. 2021-5
J Affect Disord. 2020-9-1