Xia Zongqi, Chikersal Prerna, Venkatesh Shruthi, Walker Elizabeth, Dey Anind K, Goel Mayank
Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, United States.
J Med Internet Res. 2025 Jun 3;27:e70871. doi: 10.2196/70871.
Longitudinal tracking of multiple sclerosis (MS) symptoms in an individual's environment may improve self-monitoring and clinical management for people with MS. Conventional symptom tracking methods rely on self-reports and clinical visits, which can be infrequent, subjective, and burdensome. Digital phenotyping using passively collected sensor data from smartphones and fitness trackers offers a promising alternative for continuous, real-time symptom monitoring with minimal patient burden.
We aimed to develop and evaluate a machine learning (ML)-based digital phenotyping approach to monitor the severity of clinically-relevant MS symptoms. We used passive sensing data to predict short-term fluctuations in patient-reported symptoms, including depressive symptoms, global MS symptom burden, severe fatigue, and poor sleep quality. Further, we examined the impact of incorporating behavioral context features and ecological momentary assessments on prediction performance.
We conducted a 12- to 24-week longitudinal study involving 104 people with MS, collecting passive sensor and behavioral health data. Smartphone sensors recorded call activity, location, and screen use, while fitness trackers captured heart rate, sleep patterns, and step count. We extracted patient-level behavioral features and categorized them into 2 feature sets: one from the prediction period (called action) and one from the preceding period (called context). Using an ML pipeline based on support vector machines and AdaBoost, we evaluated the predictive performance of sensor-based models, both with and without ecological momentary assessment inputs.
Between November 16, 2019, and January 24, 2021, overall, 104 people with MS (women: n=88, 84.6%; non-Hispanic White: n=97, 93.3%; mean age 44, SD 11.8 years) from a clinic-based cohort completed 12 weeks of data collection, including a subset of 44 participants (women: n=39, 89%; non-Hispanic White: n=42, 95%; mean age 45.7, SD 11.2 years) who completed 24 weeks of data collection. In total, we collected approximately 12,500 days of passive sensor and behavioral health data from the participants. Among the best-performing models with the least sensor data requirement, the ML algorithm predicted depressive symptoms with an accuracy of 80.6% (F-score=0.76), high global MS symptom burden with an accuracy of 77.3% (F-score=0.78), severe fatigue with an accuracy of 73.8% (F-score=0.74), and poor sleep quality with an accuracy of 72.0% (F-score=0.70). Further, sensor data were largely sufficient for predicting symptom severity, while the prediction of depressive symptoms benefited from minimal active patient input in the form of responses to 2 brief questions on the day before the prediction point.
Our digital phenotyping approach using passive sensors on smartphones and fitness trackers may help patients with real-world, continuous self-monitoring of common symptoms in their own environment and assist clinicians with better triage of patient needs for timely interventions in MS and potentially other chronic neurological disorders.
在个体环境中对多发性硬化症(MS)症状进行纵向跟踪,可能会改善MS患者的自我监测和临床管理。传统的症状跟踪方法依赖于自我报告和临床就诊,而这些可能并不频繁、主观且负担较重。利用从智能手机和健身追踪器被动收集的传感器数据进行数字表型分析,为以最小的患者负担进行连续、实时症状监测提供了一种有前景的替代方法。
我们旨在开发并评估一种基于机器学习(ML)的数字表型分析方法,以监测临床相关MS症状的严重程度。我们使用被动传感数据来预测患者报告症状的短期波动,包括抑郁症状、整体MS症状负担、严重疲劳和睡眠质量差。此外,我们研究了纳入行为背景特征和生态瞬时评估对预测性能的影响。
我们进行了一项为期12至24周的纵向研究,涉及104名MS患者,收集被动传感器和行为健康数据。智能手机传感器记录通话活动、位置和屏幕使用情况,而健身追踪器记录心率、睡眠模式和步数。我们提取患者层面的行为特征,并将其分为2个特征集:一个来自预测期(称为行动),一个来自前期(称为背景)。使用基于支持向量机和AdaBoost的ML管道,我们评估了基于传感器的模型在有无生态瞬时评估输入情况下的预测性能。
在2019年11月16日至2021年1月24日期间,总体上,来自一个基于诊所队列的104名MS患者(女性:n = 88,84.6%;非西班牙裔白人:n = 97,93.3%;平均年龄44岁,标准差11.8岁)完成了12周的数据收集,其中包括44名参与者的子集(女性:n = 39,89%;非西班牙裔白人:n = 42,95%;平均年龄45.7岁,标准差11.2岁)完成了24周的数据收集。我们总共从参与者那里收集了约12500天的被动传感器和行为健康数据。在具有最少传感器数据要求的最佳性能模型中,ML算法预测抑郁症状的准确率为80.6%(F值 = 0.76),高整体MS症状负担的准确率为77.3%(F值 = 0.78),严重疲劳的准确率为73.8%(F值 = 0.74),睡眠质量差的准确率为72.0%(F值 = 0.70)。此外,传感器数据在很大程度上足以预测症状严重程度,而抑郁症状的预测受益于在预测点前一天以回答2个简短问题的形式提供的最少患者主动输入。
我们使用智能手机和健身追踪器上的被动传感器的数字表型分析方法,可能有助于患者在自身环境中对常见症状进行真实世界的连续自我监测,并帮助临床医生更好地对患者需求进行分类,以便及时对MS以及潜在的其他慢性神经系统疾病进行干预。